Derivation Lie algebras of semidirect sums

被引:0
|
作者
M. Barati
F. Saeedi
M. R. Alemi
机构
[1] Islamic Azad University,Department of Mathematics, Mashhad Branch
关键词
Semidirect sum; Derivation; Cohomology of Lie algebra; Primary 17B40; 17B56; Secondary 18G60;
D O I
暂无
中图分类号
学科分类号
摘要
Suppose that L=L1⋉L2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L=L_1 \ltimes L_2$$\end{document} is a semidirect sum of two Lie algebras. In this article, we first obtain the structure of Der(L:L2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\text {Der}}(L:L_2)$$\end{document} the subalgebra of Der(L)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\text {Der}}(L)$$\end{document} that consists of those derivations mapping L2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L_2$$\end{document} to itself. Then we investigate some conditions under which Der(L:L2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\text {Der}}(L:L_2)$$\end{document} is also a semidirect sum.
引用
收藏
页码:653 / 663
页数:10
相关论文
共 50 条
  • [41] Stochastic Lie bracket (derivation, derivation) in MB-algebras
    Masoumeh Madadi
    Reza Saadati
    Choonkil Park
    John Michael Rassias
    Journal of Inequalities and Applications, 2020
  • [42] Stochastic Lie bracket (derivation, derivation) in MB-algebras
    Madadi, Masoumeh
    Saadati, Reza
    Park, Choonkil
    Rassias, John Michael
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2020, 2020 (01)
  • [43] THE MULTIPLIER AND THE COVER OF DIRECT SUMS OF LIE ALGEBRAS
    Salemkar, Ali Reza
    Edalatzadeh, Behrouz
    ASIAN-EUROPEAN JOURNAL OF MATHEMATICS, 2012, 5 (02)
  • [44] CONFORMAL DERIVATIONS OF SEMIDIRECT PRODUCTS OF LIE CONFORMAL ALGEBRAS AND THEIR CONFORMAL MODULES
    Guo, Jiancang
    Tan, Youjun
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2014, 142 (05) : 1471 - 1483
  • [45] SECTIONAL OPERATORS, NEW INTEGRABLE SYSTEMS AND SEMIDIRECT LIE-ALGEBRAS
    MUKHOPADHYAY, I
    CHOWDHURY, AR
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1995, 28 (12): : 3511 - 3523
  • [46] Derivation Simple Color Algebras and Semisimple Lie Color Algebras
    Zhang, Xuemei
    Zhou, Jianhua
    COMMUNICATIONS IN ALGEBRA, 2009, 37 (01) : 242 - 257
  • [47] Semidirect Sums of Matroids
    Joseph E. Bonin
    Joseph P. S. Kung
    Annals of Combinatorics, 2015, 19 : 7 - 27
  • [48] Derivation algebra of direct sum of lie algebras
    Alemi, Mohammad Reza
    Saeedi, Farshid
    COGENT MATHEMATICS & STATISTICS, 2019, 6
  • [49] Lie algebras induced by a nonzero field derivation
    Gein, A. G.
    SIBERIAN MATHEMATICAL JOURNAL, 2017, 58 (05) : 786 - 793
  • [50] On a certain construction of graded Lie algebras with derivation
    Matthes, R
    Rudolph, G
    Wulkenharr, R
    JOURNAL OF GEOMETRY AND PHYSICS, 1996, 20 (2-3) : 107 - 141