Derivation Lie algebras of semidirect sums

被引:0
|
作者
M. Barati
F. Saeedi
M. R. Alemi
机构
[1] Islamic Azad University,Department of Mathematics, Mashhad Branch
关键词
Semidirect sum; Derivation; Cohomology of Lie algebra; Primary 17B40; 17B56; Secondary 18G60;
D O I
暂无
中图分类号
学科分类号
摘要
Suppose that L=L1⋉L2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L=L_1 \ltimes L_2$$\end{document} is a semidirect sum of two Lie algebras. In this article, we first obtain the structure of Der(L:L2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\text {Der}}(L:L_2)$$\end{document} the subalgebra of Der(L)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\text {Der}}(L)$$\end{document} that consists of those derivations mapping L2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L_2$$\end{document} to itself. Then we investigate some conditions under which Der(L:L2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\text {Der}}(L:L_2)$$\end{document} is also a semidirect sum.
引用
收藏
页码:653 / 663
页数:10
相关论文
共 50 条