Suppose that L=L1⋉L2\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$L=L_1 \ltimes L_2$$\end{document} is a semidirect sum of two Lie algebras. In this article, we first obtain the structure of Der(L:L2)\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${\text {Der}}(L:L_2)$$\end{document} the subalgebra of Der(L)\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${\text {Der}}(L)$$\end{document} that consists of those derivations mapping L2\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$L_2$$\end{document} to itself. Then we investigate some conditions under which Der(L:L2)\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${\text {Der}}(L:L_2)$$\end{document} is also a semidirect sum.
机构:
Xiaogan Univ, Dept Math, Xiaogan 432100, Hubei, Peoples R China
Fudan Univ, Sch Math Sci, Shanghai 200433, Peoples R ChinaXiaogan Univ, Dept Math, Xiaogan 432100, Hubei, Peoples R China
Luo, Lin
Fan, Engui
论文数: 0引用数: 0
h-index: 0
机构:
Fudan Univ, Sch Math Sci, Shanghai 200433, Peoples R ChinaXiaogan Univ, Dept Math, Xiaogan 432100, Hubei, Peoples R China