Global asymptotic stability of a second-order system of difference equations

被引:0
|
作者
Tran Hong Thai
Vu Van Khuong
机构
[1] Hung Yen University of Technology and Education,Department of Mathematics
[2] University of Transport and Communications,Department of Mathematical Analysis
来源
Indian Journal of Pure and Applied Mathematics | 2014年 / 45卷
关键词
Rational difference equations; system; global asymptotic stability; equilibrium point; semicycle;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper a sufficient condition is obtained for the global asymptotic stability of the following system of difference equations \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$x_{n + 1} = \frac{{x_n y_{n - 1}^b + 1}} {{x_n + y_{n - 1}^b }}, y_{n + 1} = \frac{{y_n x_{n - 1}^b + 1}} {{y_n + x_{n - 1}^b }}n = 0,1,2 \ldots$$\end{document} where the parameter b ∈ [0, ∞) and the initial values (xk, yk) ∈ (0, ∞) (for k = −1, 0).
引用
收藏
页码:185 / 198
页数:13
相关论文
共 50 条