Global asymptotic stability of a second-order system of difference equations
被引:0
|
作者:
Tran Hong Thai
论文数: 0引用数: 0
h-index: 0
机构:Hung Yen University of Technology and Education,Department of Mathematics
Tran Hong Thai
Vu Van Khuong
论文数: 0引用数: 0
h-index: 0
机构:Hung Yen University of Technology and Education,Department of Mathematics
Vu Van Khuong
机构:
[1] Hung Yen University of Technology and Education,Department of Mathematics
[2] University of Transport and Communications,Department of Mathematical Analysis
来源:
Indian Journal of Pure and Applied Mathematics
|
2014年
/
45卷
关键词:
Rational difference equations;
system;
global asymptotic stability;
equilibrium point;
semicycle;
D O I:
暂无
中图分类号:
学科分类号:
摘要:
In this paper a sufficient condition is obtained for the global asymptotic stability of the following system of difference equations \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$x_{n + 1} = \frac{{x_n y_{n - 1}^b + 1}}
{{x_n + y_{n - 1}^b }}, y_{n + 1} = \frac{{y_n x_{n - 1}^b + 1}}
{{y_n + x_{n - 1}^b }}n = 0,1,2 \ldots$$\end{document} where the parameter b ∈ [0, ∞) and the initial values (xk, yk) ∈ (0, ∞) (for k = −1, 0).
机构:
Lanzhou Univ, Sch Math & Stat, Lanzhou 730000, Gansu, Peoples R China
Tianshui Normal Univ, Dept Math, Tianshui 741001, Gansu, Peoples R ChinaLanzhou Univ, Sch Math & Stat, Lanzhou 730000, Gansu, Peoples R China
Hu, Lin-Xia
Li, Wan-Tong
论文数: 0引用数: 0
h-index: 0
机构:Lanzhou Univ, Sch Math & Stat, Lanzhou 730000, Gansu, Peoples R China
Li, Wan-Tong
Stevic, Stevo
论文数: 0引用数: 0
h-index: 0
机构:
Serbian Acad Sci, Math Inst, Beograd 11000, SerbiaLanzhou Univ, Sch Math & Stat, Lanzhou 730000, Gansu, Peoples R China