Paired-domination number of claw-free odd-regular graphs

被引:0
|
作者
Wei Yang
Xinhui An
Baoyindureng Wu
机构
[1] Xinjiang University,College of Mathematics and System Sciences
来源
关键词
Claw-free graphs; Cubic graphs; Domination; Paired-domination number; Regular graphs;
D O I
暂无
中图分类号
学科分类号
摘要
A paired-dominating set of a graph G is a dominating set of vertices whose induced subgraph has a perfect matching, while the paired-domination number is the minimum cardinality of a paired-dominating set in the graph, denoted by γpr(G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\gamma _{pr}(G)$$\end{document}. Let G be a connected {K1,3,K4-e}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\{K_{1,3}, K_{4}-e\}$$\end{document}-free cubic graph of order n. We show that γpr(G)≤10n+627\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\gamma _{pr}(G)\le \frac{10n+6}{27}$$\end{document} if G is C4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C_{4}$$\end{document}-free and that γpr(G)≤n3+n+69(⌈34(go+1)⌉+1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\gamma _{pr}(G)\le \frac{n}{3}+\frac{n+6}{9(\lceil \frac{3}{4}(g_o+1)\rceil +1)}$$\end{document} if G is {C4,C6,C10,…,C2go}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\{C_{4}, C_{6}, C_{10}, \ldots , C_{2g_o}\}$$\end{document}-free for an odd integer go≥3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$g_o\ge 3$$\end{document}; the extremal graphs are characterized; we also show that if G is a 2 -connected, γpr(G)=n3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\gamma _{pr}(G) = \frac{n}{3} $$\end{document}. Furthermore, if G is a connected (2k+1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(2k+1)$$\end{document}-regular {K1,3,K4-e}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\{K_{1,3}, K_4-e\}$$\end{document}-free graph of order n, then γpr(G)≤nk+1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\gamma _{pr}(G)\le \frac{n}{k+1} $$\end{document}, with equality if and only if G=L(F)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G=L(F)$$\end{document}, where F≅K1,2k+2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$F\cong K_{1, 2k+2}$$\end{document}, or k is even and F≅Kk+1,k+2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$F\cong K_{k+1,k+2}$$\end{document}.
引用
收藏
页码:1266 / 1275
页数:9
相关论文
共 50 条
  • [41] Ratios of some domination parameters in graphs and claw-free graphs
    Blidia, Mostafa
    Chellali, Mustapha
    Favaron, Odile
    GRAPH THEORY IN PARIS: PROCEEDINGS OF A CONFERENCE IN MEMORY OF CALUDE BERGE, 2007, : 61 - +
  • [42] On Minus Paired-Domination in Graphs
    邢化明
    孙良
    Journal of Beijing Institute of Technology(English Edition), 2003, (02) : 202 - 204
  • [43] Paired-domination in inflated graphs
    Kang, L
    Sohn, MY
    Cheng, TCE
    THEORETICAL COMPUTER SCIENCE, 2004, 320 (2-3) : 485 - 494
  • [44] Upper Total Domination in Claw-Free Cubic Graphs
    Ammar Babikir
    Michael A. Henning
    Graphs and Combinatorics, 2022, 38
  • [45] Paired-domination in P5-free graphs
    Dorbec, Paul
    Gravier, Sylvain
    GRAPHS AND COMBINATORICS, 2008, 24 (04) : 303 - 308
  • [46] Paired-Domination in Subdivided Star-Free Graphs
    Paul Dorbec
    Sylvain Gravier
    Graphs and Combinatorics, 2010, 26 : 43 - 49
  • [47] Paired-Domination in P5-Free Graphs
    Paul Dorbec
    Sylvain Gravier
    Graphs and Combinatorics, 2008, 24 : 303 - 308
  • [48] Upper Total Domination in Claw-Free Cubic Graphs
    Babikir, Ammar
    Henning, Michael A.
    GRAPHS AND COMBINATORICS, 2022, 38 (06)
  • [49] Bounds on total domination in claw-free cubic graphs
    Favaron, Odile
    Henning, Michael A.
    DISCRETE MATHEMATICS, 2008, 308 (16) : 3491 - 3507
  • [50] On a conjecture on total domination in claw-free cubic graphs
    Southey, Justin
    Henning, Michael A.
    DISCRETE MATHEMATICS, 2010, 310 (21) : 2984 - 2999