Paired-domination number of claw-free odd-regular graphs

被引:0
|
作者
Wei Yang
Xinhui An
Baoyindureng Wu
机构
[1] Xinjiang University,College of Mathematics and System Sciences
来源
关键词
Claw-free graphs; Cubic graphs; Domination; Paired-domination number; Regular graphs;
D O I
暂无
中图分类号
学科分类号
摘要
A paired-dominating set of a graph G is a dominating set of vertices whose induced subgraph has a perfect matching, while the paired-domination number is the minimum cardinality of a paired-dominating set in the graph, denoted by γpr(G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\gamma _{pr}(G)$$\end{document}. Let G be a connected {K1,3,K4-e}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\{K_{1,3}, K_{4}-e\}$$\end{document}-free cubic graph of order n. We show that γpr(G)≤10n+627\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\gamma _{pr}(G)\le \frac{10n+6}{27}$$\end{document} if G is C4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C_{4}$$\end{document}-free and that γpr(G)≤n3+n+69(⌈34(go+1)⌉+1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\gamma _{pr}(G)\le \frac{n}{3}+\frac{n+6}{9(\lceil \frac{3}{4}(g_o+1)\rceil +1)}$$\end{document} if G is {C4,C6,C10,…,C2go}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\{C_{4}, C_{6}, C_{10}, \ldots , C_{2g_o}\}$$\end{document}-free for an odd integer go≥3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$g_o\ge 3$$\end{document}; the extremal graphs are characterized; we also show that if G is a 2 -connected, γpr(G)=n3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\gamma _{pr}(G) = \frac{n}{3} $$\end{document}. Furthermore, if G is a connected (2k+1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(2k+1)$$\end{document}-regular {K1,3,K4-e}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\{K_{1,3}, K_4-e\}$$\end{document}-free graph of order n, then γpr(G)≤nk+1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\gamma _{pr}(G)\le \frac{n}{k+1} $$\end{document}, with equality if and only if G=L(F)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G=L(F)$$\end{document}, where F≅K1,2k+2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$F\cong K_{1, 2k+2}$$\end{document}, or k is even and F≅Kk+1,k+2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$F\cong K_{k+1,k+2}$$\end{document}.
引用
收藏
页码:1266 / 1275
页数:9
相关论文
共 50 条
  • [21] Domination versus edge domination on claw-free graphs
    Civan, Yusuf
    Deniz, Zakir
    Yetim, Mehmet Akif
    DISCRETE APPLIED MATHEMATICS, 2023, 337 (171-172) : 171 - 172
  • [22] On the Relation Between the Domination Number and Edge Domination Number of Trees and Claw-Free Cubic Graphs
    Pan, Zhuo
    Pan, Peng
    Tie, Chongshan
    MATHEMATICS, 2025, 13 (03)
  • [23] Paired-domination in graphs
    Haynes, TW
    Slater, PJ
    NETWORKS, 1998, 32 (03) : 199 - 206
  • [24] Circumferences of regular claw-free graphs
    Li, MingChu
    DISCRETE MATHEMATICS, 2006, 306 (21) : 2682 - 2694
  • [25] On the characterization of claw-free graphs with given total restrained domination number
    Pi, Xiaoming
    SPRINGERPLUS, 2016, 5
  • [26] On domination and annihilation in graphs with claw-free blocks
    Favaron, O
    Henning, MA
    Puech, J
    Rautenbach, D
    DISCRETE MATHEMATICS, 2001, 231 (1-3) : 143 - 151
  • [27] Total restrained domination in claw-free graphs
    Hongxing Jiang
    Liying Kang
    Journal of Combinatorial Optimization, 2010, 19 : 60 - 68
  • [28] Semitotal Domination in Claw-Free Cubic Graphs
    Michael A. Henning
    Alister J. Marcon
    Annals of Combinatorics, 2016, 20 : 799 - 813
  • [29] Semitotal Domination in Claw-Free Cubic Graphs
    Zhu, Enqiang
    Shao, Zehui
    Xu, Jin
    GRAPHS AND COMBINATORICS, 2017, 33 (05) : 1119 - 1130
  • [30] Semipaired Domination in Claw-Free Cubic Graphs
    Michael A. Henning
    Pawaton Kaemawichanurat
    Graphs and Combinatorics, 2018, 34 : 819 - 844