Paired-domination number of claw-free odd-regular graphs

被引:0
|
作者
Wei Yang
Xinhui An
Baoyindureng Wu
机构
[1] Xinjiang University,College of Mathematics and System Sciences
来源
关键词
Claw-free graphs; Cubic graphs; Domination; Paired-domination number; Regular graphs;
D O I
暂无
中图分类号
学科分类号
摘要
A paired-dominating set of a graph G is a dominating set of vertices whose induced subgraph has a perfect matching, while the paired-domination number is the minimum cardinality of a paired-dominating set in the graph, denoted by γpr(G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\gamma _{pr}(G)$$\end{document}. Let G be a connected {K1,3,K4-e}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\{K_{1,3}, K_{4}-e\}$$\end{document}-free cubic graph of order n. We show that γpr(G)≤10n+627\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\gamma _{pr}(G)\le \frac{10n+6}{27}$$\end{document} if G is C4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C_{4}$$\end{document}-free and that γpr(G)≤n3+n+69(⌈34(go+1)⌉+1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\gamma _{pr}(G)\le \frac{n}{3}+\frac{n+6}{9(\lceil \frac{3}{4}(g_o+1)\rceil +1)}$$\end{document} if G is {C4,C6,C10,…,C2go}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\{C_{4}, C_{6}, C_{10}, \ldots , C_{2g_o}\}$$\end{document}-free for an odd integer go≥3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$g_o\ge 3$$\end{document}; the extremal graphs are characterized; we also show that if G is a 2 -connected, γpr(G)=n3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\gamma _{pr}(G) = \frac{n}{3} $$\end{document}. Furthermore, if G is a connected (2k+1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(2k+1)$$\end{document}-regular {K1,3,K4-e}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\{K_{1,3}, K_4-e\}$$\end{document}-free graph of order n, then γpr(G)≤nk+1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\gamma _{pr}(G)\le \frac{n}{k+1} $$\end{document}, with equality if and only if G=L(F)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G=L(F)$$\end{document}, where F≅K1,2k+2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$F\cong K_{1, 2k+2}$$\end{document}, or k is even and F≅Kk+1,k+2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$F\cong K_{k+1,k+2}$$\end{document}.
引用
收藏
页码:1266 / 1275
页数:9
相关论文
共 50 条
  • [1] Paired-domination number of claw-free odd-regular graphs
    Yang, Wei
    An, Xinhui
    Wu, Baoyindureng
    JOURNAL OF COMBINATORIAL OPTIMIZATION, 2017, 33 (04) : 1266 - 1275
  • [2] Paired-Domination in Claw-Free Graphs
    Huang, Shenwei
    Kang, Liying
    Shan, Erfang
    GRAPHS AND COMBINATORICS, 2013, 29 (06) : 1777 - 1794
  • [3] Paired-Domination in Claw-Free Graphs
    Shenwei Huang
    Liying Kang
    Erfang Shan
    Graphs and Combinatorics, 2013, 29 : 1777 - 1794
  • [4] Upper paired-domination in claw-free graphs
    Dorbec, Paul
    Henning, Michael A.
    JOURNAL OF COMBINATORIAL OPTIMIZATION, 2011, 22 (02) : 235 - 251
  • [5] Paired-Domination in Claw-Free Cubic Graphs
    Odile Favaron
    Michael A. Henning
    Graphs and Combinatorics, 2004, 20 : 447 - 456
  • [6] Upper paired-domination in claw-free graphs
    Paul Dorbec
    Michael A. Henning
    Journal of Combinatorial Optimization, 2011, 22 : 235 - 251
  • [7] Paired-domination in generalized claw-free graphs
    Dorbec, Paul
    Gravier, Sylvain
    Henning, Michael A.
    JOURNAL OF COMBINATORIAL OPTIMIZATION, 2007, 14 (01) : 1 - 7
  • [8] Paired-domination in generalized claw-free graphs
    Paul Dorbec
    Sylvain Gravier
    Michael A. Henning
    Journal of Combinatorial Optimization, 2007, 14 : 1 - 7
  • [9] Paired-domination in claw-free cubic graphs
    Favaron, O
    Henning, MA
    GRAPHS AND COMBINATORICS, 2004, 20 (04) : 447 - 456
  • [10] Paired-domination in claw-free graphs with minimum degree at least three
    Lu, Changhong
    Wang, Bing
    Wang, Kan
    Wu, Yana
    DISCRETE APPLIED MATHEMATICS, 2019, 257 : 250 - 259