In many applications, the cumulative distribution function (cdf) FQN\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$F_{Q_N}$$\end{document} of a positively weighted sum of N i.i.d. chi-squared random variables QN\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$Q_N$$\end{document} is required. Although there is no known closed-form solution for FQN\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$F_{Q_N}$$\end{document}, there are many good approximations. When computational efficiency is not an issue, Imhof’s method provides a good solution. However, when both the accuracy of the approximation and the speed of its computation are a concern, there is no clear preferred choice. Previous comparisons between approximate methods could be considered insufficient. Furthermore, in streaming data applications where the computation needs to be both sequential and efficient, only a few of the available methods may be suitable. Streaming data problems are becoming ubiquitous and provide the motivation for this paper. We develop a framework to enable a much more extensive comparison between approximate methods for computing the cdf of weighted sums of an arbitrary random variable. Utilising this framework, a new and comprehensive analysis of four efficient approximate methods for computing FQN\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$F_{Q_N}$$\end{document} is performed. This analysis procedure is much more thorough and statistically valid than previous approaches described in the literature. A surprising result of this analysis is that the accuracy of these approximate methods increases with N.
机构:
Slovak Acad Sci, Inst Measurement Sci, Bratislava, SlovakiaSlovak Acad Sci, Inst Measurement Sci, Bratislava, Slovakia
Witkovsky, Viktor
Wimmer, Gejza
论文数: 0引用数: 0
h-index: 0
机构:
Slovak Acad Sci, Math Inst, Bratislava, Slovakia
Matej Bel Univ, Fac Nat Sci, Banska Bystrica, SlovakiaSlovak Acad Sci, Inst Measurement Sci, Bratislava, Slovakia
Wimmer, Gejza
Duby, Tomy
论文数: 0引用数: 0
h-index: 0
机构:Slovak Acad Sci, Inst Measurement Sci, Bratislava, Slovakia
机构:
Thompson Rivers Univ, Dept Math & Stat, 900 McGill Rd, Kamloops, BC V2C 0C8, CanadaThompson Rivers Univ, Dept Math & Stat, 900 McGill Rd, Kamloops, BC V2C 0C8, Canada
Shi, X.
Wong, A.
论文数: 0引用数: 0
h-index: 0
机构:
York Univ, Dept Math & Stat, 4700 Keele St, Keele, ON M3J 1P3, CanadaThompson Rivers Univ, Dept Math & Stat, 900 McGill Rd, Kamloops, BC V2C 0C8, Canada
Wong, A.
Zheng, S.
论文数: 0引用数: 0
h-index: 0
机构:
York Univ, Dept Math & Stat, 4700 Keele St, Keele, ON M3J 1P3, CanadaThompson Rivers Univ, Dept Math & Stat, 900 McGill Rd, Kamloops, BC V2C 0C8, Canada