Convergence Towards Linear Combinations of Chi-Squared Random Variables: A Malliavin-Based Approach

被引:17
|
作者
Azmoodeh, Ehsan [1 ]
Peccati, Giovanni [1 ]
Poly, Guillaume [2 ]
机构
[1] Univ Luxembourg, Math Res Unit, L-1359 Luxembourg, Luxembourg
[2] Univ Rennes 1, Inst Rech Math, F-35042 Rennes, France
来源
IN MEMORIAM MARC YOR - SEMINAIRE DE PROBABILITES XLVII | 2015年 / 2137卷
关键词
CENTRAL LIMIT-THEOREMS; INTEGRALS;
D O I
10.1007/978-3-319-18585-9_16
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We investigate the problem of finding necessary and sufficient conditions for convergence in distribution towards a general finite linear combination of independent chi-squared random variables, within the framework of random objects living on a fixed Gaussian space. Using a recent representation of cumulants in terms of the Malliavin calculus operators Gamma(i) (introduced by Nourdin and Peccati, J. Appl. Funct. Anal. 258(11), 3775-3791, 2010), we provide conditions that apply to random variables living in a finite sum of Wiener chaoses. As an important by-product of our analysis, we shall derive a new proof and a new interpretation of a recent finding by Nourdin and Poly (Electron. Commun. Probab. 17(36), 1-12, 2012), concerning the limiting behavior of random variables living in a Wiener chaos of order two. Our analysis contributes to a fertile line of research, that originates from questions raised by Marc Yor, in the framework of limit theorems for non-linear functionals of Brownian local times.
引用
收藏
页码:339 / 367
页数:29
相关论文
共 21 条