Error suppression in adiabatic quantum computing with qubit ensembles

被引:0
|
作者
Naeimeh Mohseni
Marek Narozniak
Alexey N. Pyrkov
Valentin Ivannikov
Jonathan P. Dowling
Tim Byrnes
机构
[1] East China Normal University,State Key Laboratory of Precision Spectroscopy, School of Physical and Material Sciences
[2] Max-Planck-Institut für die Physik des Lichts,Department of Physics
[3] Institute for Advanced Studies in Basic Sciences (IASBS),Department of Physics
[4] New York University Shanghai,Hearne Institute for Theoretical Physics, Department of Physics & Astronomy
[5] New York University,undefined
[6] Institute of Problems of Chemical Physics RAS,undefined
[7] Louisiana State University,undefined
[8] NYU-ECNU Institute of Physics at NYU Shanghai,undefined
[9] National Institute of Informatics,undefined
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
Incorporating protection against quantum errors into adiabatic quantum computing (AQC) is an important task due to the inevitable presence of decoherence. Here, we investigate an error-protected encoding of the AQC Hamiltonian, where qubit ensembles are used in place of qubits. Our Hamiltonian only involves total spin operators of the ensembles, offering a simpler route towards error-corrected quantum computing. Our scheme is particularly suited to neutral atomic gases where it is possible to realize large ensemble sizes and produce ensemble-ensemble entanglement. We identify a critical ensemble size Nc where the nature of the first excited state becomes a single particle perturbation of the ground state, and the gap energy is predictable by mean-field theory. For ensemble sizes larger than Nc, the ground state becomes protected due to the presence of logically equivalent states and the AQC performance improves with N, as long as the decoherence rate is sufficiently low.
引用
收藏
相关论文
共 50 条
  • [41] Shortcuts to Adiabaticity in Digitized Adiabatic Quantum Computing
    Hegade, Narendra N.
    Paul, Koushik
    Ding, Yongcheng
    Sanz, Mikel
    Albarran-Arriagada, F.
    Solano, Enrique
    Chen, Xi
    PHYSICAL REVIEW APPLIED, 2021, 15 (02):
  • [42] On the practicality of adiabatic quantum computing with optical schemes
    Goswami, Debabrata
    INTERNATIONAL JOURNAL OF QUANTUM INFORMATION, 2007, 5 (1-2) : 179 - 188
  • [43] Adiabatic quantum computing for random satisfiability problems
    Hogg, T
    PHYSICAL REVIEW A, 2003, 67 (02)
  • [44] Random matrix model of adiabatic quantum computing
    Mitchell, DR
    Adami, C
    Lue, W
    Williams, CP
    PHYSICAL REVIEW A, 2005, 71 (05):
  • [45] Adiabatic Quantum Computing for Multi Object Tracking
    Zaech, Jan-Nico
    Liniger, Alexander
    Danelljan, Martin
    Dai, Dengxin
    Gool, Luc Van
    2022 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2022, : 8801 - 8812
  • [46] Digitized adiabatic quantum computing with a superconducting circuit
    R. Barends
    A. Shabani
    L. Lamata
    J. Kelly
    A. Mezzacapo
    U. Las Heras
    R. Babbush
    A. G. Fowler
    B. Campbell
    Yu Chen
    Z. Chen
    B. Chiaro
    A. Dunsworth
    E. Jeffrey
    E. Lucero
    A. Megrant
    J. Y. Mutus
    M. Neeley
    C. Neill
    P. J. J. O’Malley
    C. Quintana
    P. Roushan
    D. Sank
    A. Vainsencher
    J. Wenner
    T. C. White
    E. Solano
    H. Neven
    John M. Martinis
    Nature, 2016, 534 : 222 - 226
  • [47] Adiabatic cluster-state quantum computing
    Bacon, Dave
    Flammia, Steven T.
    PHYSICAL REVIEW A, 2010, 82 (03):
  • [48] Digitized adiabatic quantum computing with a superconducting circuit
    Barends, R.
    Shabani, A.
    Lamata, L.
    Kelly, J.
    Mezzacapo, A.
    Heras, U. Las
    Babbush, R.
    Fowler, A. G.
    Campbell, B.
    Chen, Yu
    Chen, Z.
    Chiaro, B.
    Dunsworth, A.
    Jeffrey, E.
    Lucero, E.
    Megrant, A.
    Mutus, J. Y.
    Neeley, M.
    Neill, C.
    O'Malley, P. J. J.
    Quintana, C.
    Roushan, P.
    Sank, D.
    Vainsencher, A.
    Wenner, J.
    White, T. C.
    Solano, E.
    Neven, H.
    Martinis, John M.
    NATURE, 2016, 534 (7606) : 222 - 226
  • [49] Classical ensembles of single-qubit quantum variational circuits for classification
    McFarthing, Shane
    Pillay, Anban
    Sinayskiy, Ilya
    Petruccione, Francesco
    QUANTUM MACHINE INTELLIGENCE, 2024, 6 (02)
  • [50] Demonstration of Adiabatic Variational Quantum Computing with a Superconducting Quantum Coprocessor
    Chen, Ming-Cheng
    Gong, Ming
    Xu, Xiaosi
    Yuan, Xiao
    Wang, Jian-Wen
    Wang, Can
    Ying, Chong
    Lin, Jin
    Xu, Yu
    Wu, Yulin
    Wang, Shiyu
    Deng, Hui
    Liang, Futian
    Peng, Cheng-Zhi
    Benjamin, Simon C.
    Zhu, Xiaobo
    Lu, Chao-Yang
    Pan, Jian-Wei
    PHYSICAL REVIEW LETTERS, 2020, 125 (18)