An overpartition analogue of the q-binomial coefficients

被引:0
|
作者
Jehanne Dousse
Byungchan Kim
机构
[1] Universite Paris Diderot - Paris 7,LIAFA
[2] Seoul National University of Science and Technology,School of Liberal Arts
来源
The Ramanujan Journal | 2017年 / 42卷
关键词
-Binomial coefficients; Gaussian Polynomial; Overpartitions; Rogers–Ramanujan type identity; 05A17; 11P81; 11P84;
D O I
暂无
中图分类号
学科分类号
摘要
We define an overpartition analogue of Gaussian polynomials (also known as q-binomial coefficients) as a generating function for the number of overpartitions fitting inside the M×N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$M \times N$$\end{document} rectangle. We call these new polynomials over Gaussian polynomials or over q-binomial coefficients. We investigate basic properties and applications of over q-binomial coefficients. In particular, via the recurrences and combinatorial interpretations of over q-binomial coefficients, we prove a Rogers–Ramanujan type partition theorem.
引用
收藏
页码:267 / 283
页数:16
相关论文
共 50 条
  • [1] An overpartition analogue of the q-binomial coefficients
    Dousse, Jehanne
    Kim, Byungchan
    RAMANUJAN JOURNAL, 2017, 42 (02): : 267 - 283
  • [2] An overpartition analogue of q-binomial coefficients, II: Combinatorial proofs and (q, t)-log concavity
    Dousse, Jehanne
    Kim, Byungchan
    JOURNAL OF COMBINATORIAL THEORY SERIES A, 2018, 158 : 228 - 253
  • [3] Multi-partition analogue of q-binomial coefficients
    Kim, Byungchan
    Nam, Hayan
    Yu, Myungjun
    INTERNATIONAL JOURNAL OF NUMBER THEORY, 2024, 20 (05) : 1327 - 1351
  • [4] A CONGRUENCE ON Q-BINOMIAL COEFFICIENTS
    Xu, Jie-Hong
    Zhao, Bao-Zhu
    2012 INTERNATIONAL CONFERENCE ON WAVELET ACTIVE MEDIA TECHNOLOGY AND INFORMATION PROCESSING (LCWAMTIP), 2012, : 390 - 393
  • [5] SOME q-BINOMIAL COEFFICIENTS
    Shannon, A. G.
    NOTES ON NUMBER THEORY AND DISCRETE MATHEMATICS, 2006, 12 (01) : 13 - 20
  • [6] ON ALTERNATING SUMS OF BINOMIAL AND q-BINOMIAL COEFFICIENTS
    El Bachraoui, Mohamed
    ARS COMBINATORIA, 2020, 151 : 257 - 272
  • [7] Perfect powers in q-binomial coefficients
    Luca, Florian
    ACTA ARITHMETICA, 2012, 151 (03) : 279 - 292
  • [8] Congruences on sums of q-binomial coefficients
    Liu, Ji-Cai
    Petrov, Fedor
    ADVANCES IN APPLIED MATHEMATICS, 2020, 116 (116)
  • [9] Strict unimodality of q-binomial coefficients
    Pak, Igor
    Panova, Greta
    COMPTES RENDUS MATHEMATIQUE, 2013, 351 (11-12) : 415 - 418
  • [10] ON THE CIRCULANT MATRICES WITH THE q-BINOMIAL COEFFICIENTS
    Dalkilic, Seyda
    Kocer, E. Gokcen
    ADVANCES AND APPLICATIONS IN DISCRETE MATHEMATICS, 2018, 19 (03): : 309 - 319