An overpartition analogue of the q-binomial coefficients

被引:0
|
作者
Jehanne Dousse
Byungchan Kim
机构
[1] Universite Paris Diderot - Paris 7,LIAFA
[2] Seoul National University of Science and Technology,School of Liberal Arts
来源
The Ramanujan Journal | 2017年 / 42卷
关键词
-Binomial coefficients; Gaussian Polynomial; Overpartitions; Rogers–Ramanujan type identity; 05A17; 11P81; 11P84;
D O I
暂无
中图分类号
学科分类号
摘要
We define an overpartition analogue of Gaussian polynomials (also known as q-binomial coefficients) as a generating function for the number of overpartitions fitting inside the M×N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$M \times N$$\end{document} rectangle. We call these new polynomials over Gaussian polynomials or over q-binomial coefficients. We investigate basic properties and applications of over q-binomial coefficients. In particular, via the recurrences and combinatorial interpretations of over q-binomial coefficients, we prove a Rogers–Ramanujan type partition theorem.
引用
收藏
页码:267 / 283
页数:16
相关论文
共 50 条