An overpartition analogue of q-binomial coefficients, II: Combinatorial proofs and (q, t)-log concavity

被引:9
|
作者
Dousse, Jehanne [1 ]
Kim, Byungchan [2 ]
机构
[1] Univ Zurich, Inst Math, Winterthurerstr 190, CH-8057 Zurich, Switzerland
[2] Seoul Natl Univ Sci & Technol, Sch Liberal Arts, 232 Gongneung Ro, Seoul 01811, South Korea
基金
新加坡国家研究基金会;
关键词
Gaussian polynomial; q-Binomial coefficient; Over-(q; t)-binomial coefficient; Finite versions of q-series identities; Combinatorial proofs; q-log concavity; Delannoy numbers; Overpartitions; IDENTITY;
D O I
10.1016/j.jcta.2018.03.011
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In a previous paper, we studied an overpartition analogue of Gaussian polynomials as the generating function for overpartitions fitting inside an m x n rectangle. Here, we add one more parameter counting the number of overlined parts, obtaining a two-parameter generalization <([(m+n)(n)])over bar>(q,t) of Gaussian polynomials, which is also a (q, t)-analogue of Delannoy numbers. First we obtain finite versions of classical q-series identities such as the q-binomial theorem and the Lebesgue identity, as well as two-variable generalizations of classical identities involving Gaussian polynomials. Then, by constructing involutions, we obtain an identity involving a finite theta function and prove the (q, t)-log concavity of <([(m+n)(n)])over bar>q,t. We particularly emphasize the role of combinatorial proofs and the consequences of our results on Delannoy numbers. We conclude with some conjectures about the unimodality of <([(m+n)(n)])over bar>q,t. (C) 2018 Elsevier Inc. All rights reserved.
引用
收藏
页码:228 / 253
页数:26
相关论文
共 50 条
  • [1] An overpartition analogue of the q-binomial coefficients
    Jehanne Dousse
    Byungchan Kim
    The Ramanujan Journal, 2017, 42 : 267 - 283
  • [2] An overpartition analogue of the q-binomial coefficients
    Dousse, Jehanne
    Kim, Byungchan
    RAMANUJAN JOURNAL, 2017, 42 (02): : 267 - 283
  • [3] THE Q-LOG-CONCAVITY OF Q-BINOMIAL COEFFICIENTS
    BUTLER, LM
    JOURNAL OF COMBINATORIAL THEORY SERIES A, 1990, 54 (01) : 54 - 63
  • [4] Log-concavity results for a biparametric and an elliptic extension of the q-binomial coefficients
    Schlosser, Michael J.
    Senapati, Koushik
    Uncu, Ali K.
    INTERNATIONAL JOURNAL OF NUMBER THEORY, 2021, 17 (03) : 787 - 804
  • [5] Combinatorial proofs of a kind of binomial and q-binomial coefficient identities
    Guo, Victor J. W.
    Zhang, Jing
    ARS COMBINATORIA, 2014, 113 : 415 - 428
  • [6] Combinatorial proofs of two q-binomial coefficient identities
    Liu, Ji-cai
    Zhao, Yuan-yuan
    BULLETIN MATHEMATIQUE DE LA SOCIETE DES SCIENCES MATHEMATIQUES DE ROUMANIE, 2023, 66 (04): : 381 - 386
  • [7] Preserving log-concavity for p, q-binomial coefficient
    Ahmia, Moussa
    Belbachir, Hacene
    DISCRETE MATHEMATICS ALGORITHMS AND APPLICATIONS, 2019, 11 (02)
  • [8] Multi-partition analogue of q-binomial coefficients
    Kim, Byungchan
    Nam, Hayan
    Yu, Myungjun
    INTERNATIONAL JOURNAL OF NUMBER THEORY, 2024, 20 (05) : 1327 - 1351
  • [9] A combinatorial proof of strict unimodality for q-binomial coefficients
    Dhand, Vivek
    DISCRETE MATHEMATICS, 2014, 335 : 20 - 24
  • [10] ON THE Q-LOG-CONCAVITY OF GAUSSIAN BINOMIAL COEFFICIENTS
    KRATTENTHALER, C
    MONATSHEFTE FUR MATHEMATIK, 1989, 107 (04): : 333 - 339