Natural Equilibrium States for Multimodal Maps

被引:0
|
作者
Godofredo Iommi
Mike Todd
机构
[1] Pontificia Universidad Católica de Chile (PUC),Facultad de Matemáticas
[2] Faculdade de Ciências da Universidade do Porto,Departamento de Matemática Pura
[3] Boston University,Department of Mathematics and Statistics
来源
关键词
Order Phase Transition; Gibbs Measure; Pressure Function; Ergodic Measure; Summable Variation;
D O I
暂无
中图分类号
学科分类号
摘要
This paper is devoted to the study of the thermodynamic formalism for a class of real multimodal maps. This class contains, but it is larger than, Collet-Eckmann. For a map in this class, we prove existence and uniqueness of equilibrium states for the geometric potentials −t log |Df|, for the largest possible interval of parameters t. We also study the regularity and convexity properties of the pressure function, completely characterising the first order phase transitions. Results concerning the existence of absolutely continuous invariant measures with respect to the Lebesgue measure are also obtained.
引用
收藏
页码:65 / 94
页数:29
相关论文
共 50 条
  • [41] Equilibrium states for non-uniformly expanding maps: Decay of correlations and strong stability
    Castro, A.
    Varandas, P.
    ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2013, 30 (02): : 225 - 249
  • [42] On the speed of convergence to equilibrium states for multi-dimensional maps with indifferent periodic points
    Yuri, M
    NONLINEARITY, 2002, 15 (02) : 429 - 445
  • [43] Equilibrium States of Weakly Hyperbolic One-Dimensional Maps for Hölder Potentials
    Huaibin Li
    Juan Rivera-Letelier
    Communications in Mathematical Physics, 2014, 328 : 397 - 419
  • [44] Maps of States
    Hayes, Terrance
    YALE REVIEW, 2021, 109 (01): : 76 - 77
  • [45] MAPS: Multimodal Attention for Product Similarity
    Das, Nilotpal
    Joshi, Aniket
    Yenigalla, Promod
    Agrwal, Gourav
    2022 IEEE WINTER CONFERENCE ON APPLICATIONS OF COMPUTER VISION (WACV 2022), 2022, : 2988 - 2996
  • [46] MONOTONICITY OF ENTROPY FOR REAL MULTIMODAL MAPS
    Bruin, Henk
    Van Strien, Sebastian
    JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY, 2015, 28 (01) : 1 - 61
  • [47] Multimodal Application for the Perception of Spaces (MAPS)
    Adams, Richard J.
    Pawluk, Dianne T. V.
    Fields, Margaret A.
    Clingman, Ryan
    ASSETS'15: PROCEEDINGS OF THE 17TH INTERNATIONAL ACM SIGACCESS CONFERENCE ON COMPUTERS & ACCESSIBILITY, 2015, : 393 - 394
  • [48] Geometric Pressure for Multimodal Maps of the Interval
    Przytycki, Feliks
    Rivera-Letelier, Juan
    MEMOIRS OF THE AMERICAN MATHEMATICAL SOCIETY, 2019, 259 (1246) : 1 - +
  • [49] A full family of multimodal maps on the circle
    de Melo, Welington
    Salomao, Pedro A. S.
    Vargas, Edson
    ERGODIC THEORY AND DYNAMICAL SYSTEMS, 2011, 31 : 1325 - 1344
  • [50] Phase space universality for multimodal maps
    Daniel Smania
    Bulletin of the Brazilian Mathematical Society, 2005, 36 : 225 - 274