Natural Equilibrium States for Multimodal Maps

被引:0
|
作者
Godofredo Iommi
Mike Todd
机构
[1] Pontificia Universidad Católica de Chile (PUC),Facultad de Matemáticas
[2] Faculdade de Ciências da Universidade do Porto,Departamento de Matemática Pura
[3] Boston University,Department of Mathematics and Statistics
来源
关键词
Order Phase Transition; Gibbs Measure; Pressure Function; Ergodic Measure; Summable Variation;
D O I
暂无
中图分类号
学科分类号
摘要
This paper is devoted to the study of the thermodynamic formalism for a class of real multimodal maps. This class contains, but it is larger than, Collet-Eckmann. For a map in this class, we prove existence and uniqueness of equilibrium states for the geometric potentials −t log |Df|, for the largest possible interval of parameters t. We also study the regularity and convexity properties of the pressure function, completely characterising the first order phase transitions. Results concerning the existence of absolutely continuous invariant measures with respect to the Lebesgue measure are also obtained.
引用
收藏
页码:65 / 94
页数:29
相关论文
共 50 条
  • [31] Existence, uniqueness and stability of equilibrium states for non-uniformly expanding maps
    Varandas, Paulo
    Viana, Marcelo
    ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2010, 27 (02): : 555 - 593
  • [32] Equilibrium states for interval maps:: Potentials with sup φ -: inf φ < htop(f)
    Bruin, Henk
    Todd, Mike
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2008, 283 (03) : 579 - 611
  • [33] Equilibrium States of Weakly Hyperbolic One-Dimensional Maps for Holder Potentials
    Li, Huaibin
    Rivera-Letelier, Juan
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2014, 328 (01) : 397 - 419
  • [34] A NATURAL EXTENSION FOR STATES NOT AT EQUILIBRIUM OF USUAL CONCEPT OF INFORMATION ENTROPY
    VELARDE, MG
    ANALES DE FISICA, 1969, 65 (3-4): : 131 - &
  • [35] Dimension Theory for Multimodal Maps
    Godofredo Iommi
    Mike Todd
    Annales Henri Poincaré, 2011, 12 : 591 - 620
  • [36] A family of multimodal dynamic maps
    Campos-Canton, E.
    Femat, R.
    Pisarchik, A. N.
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2011, 16 (09) : 3457 - 3462
  • [37] Dimension Theory for Multimodal Maps
    Iommi, Godofredo
    Todd, Mike
    ANNALES HENRI POINCARE, 2011, 12 (03): : 591 - 620
  • [38] Lyapunov spectrum for multimodal maps
    Gelfert, Katrin
    Przytycki, Feliks
    Rams, Michal
    ERGODIC THEORY AND DYNAMICAL SYSTEMS, 2016, 36 : 1441 - 1493
  • [39] Diffusion Maps for Multimodal Registration
    Piella, Gemma
    SENSORS, 2014, 14 (06): : 10562 - 10577
  • [40] RELATIVE EQUILIBRIUM STATES AND DIMENSIONS OF FIBERWISE INVARIANT MEASURES FOR RANDOM DISTANCE EXPANDING MAPS
    Simmons, David
    Urbanski, Mariusz
    STOCHASTICS AND DYNAMICS, 2014, 14 (01)