Natural Equilibrium States for Multimodal Maps

被引:0
|
作者
Godofredo Iommi
Mike Todd
机构
[1] Pontificia Universidad Católica de Chile (PUC),Facultad de Matemáticas
[2] Faculdade de Ciências da Universidade do Porto,Departamento de Matemática Pura
[3] Boston University,Department of Mathematics and Statistics
来源
关键词
Order Phase Transition; Gibbs Measure; Pressure Function; Ergodic Measure; Summable Variation;
D O I
暂无
中图分类号
学科分类号
摘要
This paper is devoted to the study of the thermodynamic formalism for a class of real multimodal maps. This class contains, but it is larger than, Collet-Eckmann. For a map in this class, we prove existence and uniqueness of equilibrium states for the geometric potentials −t log |Df|, for the largest possible interval of parameters t. We also study the regularity and convexity properties of the pressure function, completely characterising the first order phase transitions. Results concerning the existence of absolutely continuous invariant measures with respect to the Lebesgue measure are also obtained.
引用
收藏
页码:65 / 94
页数:29
相关论文
共 50 条
  • [1] Natural Equilibrium States for Multimodal Maps
    Iommi, Godofredo
    Todd, Mike
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2010, 300 (01) : 65 - 94
  • [2] Equilibrium states, pressure and escape for multimodal maps with holes
    Mark F. Demers
    Mike Todd
    Israel Journal of Mathematics, 2017, 221 : 367 - 424
  • [3] EQUILIBRIUM STATES, PRESSURE AND ESCAPE FOR MULTIMODAL MAPS WITH HOLES
    Demers, Mark F.
    Todd, Mike
    ISRAEL JOURNAL OF MATHEMATICS, 2017, 221 (01) : 367 - 424
  • [4] Equilibrium States for Expanding Thurston Maps
    Li, Zhiqiang
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2018, 357 (02) : 811 - 872
  • [5] Equilibrium States for Expanding Thurston Maps
    Zhiqiang Li
    Communications in Mathematical Physics, 2018, 357 : 811 - 872
  • [6] The equilibrium states for semigroups of rational maps
    Sumi, Hiroki
    Urbanski, Mariusz
    MONATSHEFTE FUR MATHEMATIK, 2009, 156 (04): : 371 - 390
  • [7] Equilibrium states for maps isotopic to Anosov
    Alvarez, Carlos F.
    Sanchez, Adriana
    Varao, Regis
    NONLINEARITY, 2021, 34 (06) : 4264 - 4282
  • [8] The equilibrium states for semigroups of rational maps
    Hiroki Sumi
    Mariusz Urbański
    Monatshefte für Mathematik, 2009, 156 : 371 - 390
  • [9] Equilibrium states of interval maps for hyperbolic potentials
    Li, Huaibin
    Rivera-Letelier, Juan
    NONLINEARITY, 2014, 27 (08) : 1779 - 1804
  • [10] Statistical properties of equilibrium states for rational maps
    Haydn, N
    ERGODIC THEORY AND DYNAMICAL SYSTEMS, 2000, 20 : 1371 - 1390