Author Correction: Dental anomaly detection using intraoral photos via deep learning

被引:0
|
作者
Ronilo Ragodos
Tong Wang
Carmencita Padilla
Jacqueline T. Hecht
Fernando A. Poletta
Iêda M. Orioli
Carmen J. Buxó
Azeez Butali
Consuelo Valencia-Ramirez
Claudia Restrepo Muñeton
George L. Wehby
Seth M. Weinberg
Mary L. Marazita
Lina M. Moreno Uribe
Brian J. Howe
机构
[1] University of Iowa,Department of Management Sciences, Tippie College of Business
[2] University of the Philippines,Department of Pediatrics, College of Medicine
[3] University of Texas Health Science Center at Houston,Department of Pediatrics
[4] CEMIC-CONICET,ECLAMC at Center for Medical Education and Clinical Research
[5] Federal University of Rio de Janeiro,ECLAMC at Department of Genetics, Institute of Biology
[6] University of Puerto Rico,Dental and Craniofacial Genomics Core, School of Dental Medicine
[7] University of Iowa,Department of Oral Pathology, Radiology, and Medicine
[8] University of Iowa,The Iowa Institute for Oral Health Research, College of Dentistry
[9] Clinica Noel,Department of Health Management and Policy, College of Public Health
[10] University of Iowa,Center for Craniofacial and Dental Genetics, School of Dental Medicine
[11] University of Pittsburgh,Department of Orthodontics, College of Dentistry
[12] University of Iowa,Department of Family Dentistry, College of Dentistry
[13] University of Iowa,undefined
来源
Scientific Reports | / 12卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
相关论文
共 50 条
  • [11] Anomaly Detection of Breast Cancer Using Deep Learning
    Alloqmani, Ahad
    Abushark, Yoosef B.
    Khan, Asif Irshad
    ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING, 2023, 48 (08) : 10977 - 11002
  • [12] Using Deep Learning for Anomaly Detection in Autonomous Systems
    Jha, Nikhil Kumar
    von Enzberg, Sebastian
    Hillebrand, Michael
    ERCIM NEWS, 2020, (122): : 47 - 48
  • [13] Anomaly Detection of Breast Cancer Using Deep Learning
    Ahad Alloqmani
    Yoosef B. Abushark
    Asif Irshad Khan
    Arabian Journal for Science and Engineering, 2023, 48 : 10977 - 11002
  • [14] Hyperspectral Anomaly Detection Using Deep Learning: A Review
    Hu, Xing
    Xie, Chun
    Fan, Zhe
    Duan, Qianqian
    Zhang, Dawei
    Jiang, Linhua
    Wei, Xian
    Hong, Danfeng
    Li, Guoqiang
    Zeng, Xinhua
    Chen, Wenming
    Wu, Dongfang
    Chanussot, Jocelyn
    REMOTE SENSING, 2022, 14 (09)
  • [15] SADDLE: Spacecraft Anomaly Detection using Deep Learning
    Srivastava, Ankit
    Badal, Neeraj
    Manoj, B. S.
    2024 IEEE SPACE, AEROSPACE AND DEFENCE CONFERENCE, SPACE 2024, 2024, : 128 - 131
  • [16] A review on anomaly detection techniques using deep learning
    NOMURA Y.
    Zairyo/Journal of the Society of Materials Science, Japan, 2020, 69 (09) : 650 - 656
  • [17] Anomaly Detection at the IoT Edge using Deep Learning
    Utomo, Darmawan
    Hsiung, Pao-Ann
    2019 IEEE INTERNATIONAL CONFERENCE ON CONSUMER ELECTRONICS - TAIWAN (ICCE-TW), 2019,
  • [18] Network anomaly detection using deep learning techniques
    Hooshmand, Mohammad Kazim
    Hosahalli, Doreswamy
    CAAI TRANSACTIONS ON INTELLIGENCE TECHNOLOGY, 2022, 7 (02) : 228 - 243
  • [19] Deep Learning for Anomaly Detection
    Pang, Guansong
    Aggarwal, Charu
    Shen, Chunhua
    Sebe, Nicu
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2022, 33 (06) : 2282 - 2286
  • [20] Deep Learning for Anomaly Detection
    Wang, Ruoying
    Nie, Kexin
    Wang, Tie
    Yang, Yang
    Long, Bo
    PROCEEDINGS OF THE 13TH INTERNATIONAL CONFERENCE ON WEB SEARCH AND DATA MINING (WSDM '20), 2020, : 894 - 896