Enhancement of OMI aerosol optical depth data assimilation using artificial neural network

被引:0
|
作者
A. Ali
S. E. Amin
H. H. Ramadan
M. F. Tolba
机构
[1] Ain Shams University,Scientific Computing Department
来源
关键词
Air quality; Data assimilation; Neural network; Satellite observations; Aerosol;
D O I
暂无
中图分类号
学科分类号
摘要
A regional chemical transport model assimilated with daily mean satellite and ground-based aerosol optical depth (AOD) observations is used to produce three-dimensional distributions of aerosols throughout Europe for the year 2005. In this paper, the AOD measurements of the Ozone Monitoring Instrument (OMI) are assimilated with Polyphemus model. In order to overcome missing satellite data, a methodology for preprocessing AOD based on neural network (NN) is proposed. The aerosol forecasts involve two-phase process assimilation and then a feedback correction process. During the assimilation phase, the total column AOD is estimated from the model aerosol fields. The main contribution is to adjust model state to improve the agreement between the simulated AOD and satellite retrievals of AOD. The results show that the assimilation of AOD observations significantly improves the forecast for total mass. The errors on aerosol chemical composition are reduced and are sometimes vanished by the assimilation procedure and NN preprocessing, which shows a big contribution to the assimilation process.
引用
收藏
页码:2267 / 2279
页数:12
相关论文
共 50 条
  • [21] How aerosol size matters in aerosol optical depth (AOD) assimilation and the optimization using the Angstrom exponent
    Jin, Jianbing
    Henzing, Bas
    Segers, Arjo
    ATMOSPHERIC CHEMISTRY AND PHYSICS, 2023, 23 (02) : 1641 - 1660
  • [22] Automated data processing of neutron depth profiling spectra using an Artificial Neural Network
    Albarqi, Mubarak
    Alsulami, Raed
    Graham, Joseph
    NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 2020, 953
  • [23] Aerosol data assimilation in the chemical transport model MOCAGE during the TRAQA/ChArMEx campaign: aerosol optical depth
    Sic, Bojan
    El Amraoui, Laaziz
    Piacentini, Andrea
    Marecal, Virginie
    Emili, Emanuele
    Cariolle, Daniel
    Prather, Michael
    Attie, Jean-Luc
    ATMOSPHERIC MEASUREMENT TECHNIQUES, 2016, 9 (11) : 5535 - 5554
  • [24] RETRACTED ARTICLE: On using stacked neural network for multi-sensor data merging to enhance aerosol data assimilation
    A. Ali
    S. E. Amin
    H. H. Ramadan
    M. F. Tolba
    Neural Computing and Applications, 2013, 23 (5) : 1521 - 1521
  • [25] A neural network implementation for data assimilation using MPI
    Velho, HFD
    Stephany, S
    Preto, AJ
    Vijaykumar, NL
    Nowosad, AG
    APPLICATIONS OF HIGH-PERFORMANCE COMPUTING IN ENGINEERING VII, 2002, 7 : 211 - 220
  • [26] Artificial neural network based coincidence correction for optical aerosol spectrometers
    Oeser, Lukas
    Samala, Nakul
    Hillemann, Lars
    Mueller, Jan
    Jahn-Wolf, Claudia
    Lienig, Jens
    JOURNAL OF AEROSOL SCIENCE, 2023, 171
  • [27] Strategy for studying nocturnal aerosol optical depth using artificial lights
    Zhang, J.
    Reid, J. S.
    Miller, S. D.
    Turk, F. J.
    INTERNATIONAL JOURNAL OF REMOTE SENSING, 2008, 29 (16) : 4599 - 4613
  • [28] Inversion of aerosol optical depth for Landsat 8 OLI data using deep belief network
    Jia C.
    Sun L.
    Chen Y.
    Zhang X.
    Wang W.
    Wang Y.
    Yaogan Xuebao/Journal of Remote Sensing, 2020, 24 (10): : 1180 - 1192
  • [29] Constraining black carbon aerosol over Asia using OMI aerosol absorption optical depth and the adjoint of GEOS-Chem
    Zhang, L.
    Henze, D. K.
    Grell, G. A.
    Carmichael, G. R.
    Bousserez, N.
    Zhang, Q.
    Torres, O.
    Ahn, C.
    Lu, Z.
    Cao, J.
    Mao, Y.
    ATMOSPHERIC CHEMISTRY AND PHYSICS, 2015, 15 (18) : 10281 - 10308
  • [30] Aerosol optical depth retrievals at the Izana Atmospheric Observatory from 1941 to 2013 by using artificial neural networks
    Garcia, R. D.
    Garcia, O. E.
    Cuevas, E.
    Cachorro, V. E.
    Barreto, A.
    Guirado-Fuentes, C.
    Kouremeti, N.
    Bustos, J. J.
    Romero-Campos, P. M.
    de Frutos, A. M.
    ATMOSPHERIC MEASUREMENT TECHNIQUES, 2016, 9 (01) : 53 - 62