Aerosol optical depth retrievals at the Izana Atmospheric Observatory from 1941 to 2013 by using artificial neural networks

被引:21
|
作者
Garcia, R. D. [1 ,2 ]
Garcia, O. E. [1 ]
Cuevas, E. [1 ]
Cachorro, V. E. [2 ]
Barreto, A. [1 ,3 ]
Guirado-Fuentes, C. [1 ,2 ]
Kouremeti, N. [4 ]
Bustos, J. J. [1 ]
Romero-Campos, P. M. [1 ]
de Frutos, A. M. [2 ]
机构
[1] Agencia Estatal Meteorol AEMET, Izana Atmospher Res Ctr IARC, Santa Cruz De Tenerife, Spain
[2] Univ Valladolid, Atmospher Opt Grp, Valladolid, Spain
[3] Cimel Elect, Paris, France
[4] World Radiat Ctr, Phys Meteorol Observ, Davos, Switzerland
关键词
GLOBAL SOLAR-RADIATION; IRRADIANCE; SERIES; RECONSTRUCTION; REANALYSIS; AFRICA; TRENDS; URBAN; MODEL;
D O I
10.5194/amt-9-53-2016
中图分类号
P4 [大气科学(气象学)];
学科分类号
0706 ; 070601 ;
摘要
This paper presents the reconstruction of a 73-year time series of the aerosol optical depth (AOD) at 500 nm at the subtropical high-mountain Izana Atmospheric Observatory (IZO) located in Tenerife (Canary Islands, Spain). For this purpose, we have combined AOD estimates from artificial neural networks (ANNs) from 1941 to 2001 and AOD measurements directly obtained with a Precision Filter Radiometer (PFR) between 2003 and 2013. The analysis is limited to summer months (July-August-September), when the largest aerosol load is observed at IZO (Saharan mineral dust particles). The ANN AOD time series has been comprehensively validated against coincident AOD measurements performed with a solar spectrometer Mark-I (1984-2009) and AERONET (AErosol RObotic NETwork) CIMEL photometers (2004-2009) at IZO, obtaining a rather good agreement on a daily basis: Pearson coefficient, R, of 0.97 between AERONET and ANN AOD, and 0.93 between Mark-I and ANN AOD estimates. In addition, we have analysed the long-term consistency between ANN AOD time series and long-term meteorological records identifying Saharan mineral dust events at IZO (synoptical observations and local wind records). Both analyses provide consistent results, with correlations > 85 %. Therefore, we can conclude that the reconstructed AOD time series captures well the AOD variations and dust-laden Saharan air mass outbreaks on short-term and long-term timescales and, thus, it is suitable to be used in climate analysis.
引用
收藏
页码:53 / 62
页数:10
相关论文
共 50 条
  • [1] Assessment of nocturnal aerosol optical depth from lunar photometry at the Izana high mountain observatory
    Barreto, Africa
    Roman, Roberto
    Cuevas, Emilio
    Berjon, Alberto J.
    Fernando Almansa, A.
    Toledano, Carlos
    Gonzalez, Ramiro
    Hernandez, Yballa
    Blarel, Luc
    Goloub, Philippe
    Guirado, Carmen
    Yela, Margarita
    ATMOSPHERIC MEASUREMENT TECHNIQUES, 2017, 10 (08) : 3007 - 3019
  • [2] GLOBAL ATMOSPHERIC AEROSOL OPTICAL DEPTH RETRIEVALS OVER LAND AND OCEAN FROM AATSR
    Bevan, Suzanne L.
    North, Peter R. J.
    Los, S. O.
    Grey, W. M. F.
    2009 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, VOLS 1-5, 2009, : 3906 - +
  • [3] Reconstruction of global solar radiation time series from 1933 to 2013 at the Izana Atmospheric Observatory
    Garcia, R. D.
    Cuevas, E.
    Garcia, O. E.
    Cachorro, V. E.
    Palle, P.
    Bustos, J. J.
    Romero-Campos, P. M.
    de Frutos, A. M.
    ATMOSPHERIC MEASUREMENT TECHNIQUES, 2014, 7 (09) : 3139 - 3150
  • [4] Deep Neural Networks for Aerosol Optical Depth Retrieval
    Zbizika, Renee
    Pakszys, Paulina
    Zielinski, Tymon
    ATMOSPHERE, 2022, 13 (01)
  • [5] Retrievals of Aerosol Optical Depth and Spectral Absorption From DSCOVR EPIC
    Lyapustin, Alexei
    Go, Sujung
    Korkin, Sergey
    Wang, Yujie
    Torres, Omar
    Jethva, Hiren
    Marshak, Alexander
    FRONTIERS IN REMOTE SENSING, 2021, 2
  • [6] Enhancement of OMI aerosol optical depth data assimilation using artificial neural network
    A. Ali
    S. E. Amin
    H. H. Ramadan
    M. F. Tolba
    Neural Computing and Applications, 2013, 23 : 2267 - 2279
  • [7] Enhancement of OMI aerosol optical depth data assimilation using artificial neural network
    Ali, A.
    Amin, S. E.
    Ramadan, H. H.
    Tolba, M. F.
    NEURAL COMPUTING & APPLICATIONS, 2013, 23 (7-8): : 2267 - 2279
  • [8] Improving the Estimation of Daily Aerosol Optical Depth and Aerosol Radiative Effect Using an Optimized Artificial Neural Network
    Qin, Wenmin
    Wang, Lunche
    Lin, Aiwen
    Zhang, Ming
    Bilal, Muhammad
    REMOTE SENSING, 2018, 10 (07):
  • [9] Top-of-atmosphere flux retrievals from CERES using artificial neural networks
    Loukachine, K
    Loeb, NG
    REMOTE SENSING OF ENVIRONMENT, 2004, 93 (03) : 381 - 390
  • [10] Influence of the aerosol vertical distribution on the retrievals of aerosol optical depth from satellite radiance measurements.
    Quijano, AL
    Sokolik, IN
    Toon, OB
    GEOPHYSICAL RESEARCH LETTERS, 2000, 27 (21) : 3457 - 3460