Enhancement of OMI aerosol optical depth data assimilation using artificial neural network

被引:0
|
作者
A. Ali
S. E. Amin
H. H. Ramadan
M. F. Tolba
机构
[1] Ain Shams University,Scientific Computing Department
来源
关键词
Air quality; Data assimilation; Neural network; Satellite observations; Aerosol;
D O I
暂无
中图分类号
学科分类号
摘要
A regional chemical transport model assimilated with daily mean satellite and ground-based aerosol optical depth (AOD) observations is used to produce three-dimensional distributions of aerosols throughout Europe for the year 2005. In this paper, the AOD measurements of the Ozone Monitoring Instrument (OMI) are assimilated with Polyphemus model. In order to overcome missing satellite data, a methodology for preprocessing AOD based on neural network (NN) is proposed. The aerosol forecasts involve two-phase process assimilation and then a feedback correction process. During the assimilation phase, the total column AOD is estimated from the model aerosol fields. The main contribution is to adjust model state to improve the agreement between the simulated AOD and satellite retrievals of AOD. The results show that the assimilation of AOD observations significantly improves the forecast for total mass. The errors on aerosol chemical composition are reduced and are sometimes vanished by the assimilation procedure and NN preprocessing, which shows a big contribution to the assimilation process.
引用
收藏
页码:2267 / 2279
页数:12
相关论文
共 50 条
  • [1] Enhancement of OMI aerosol optical depth data assimilation using artificial neural network
    Ali, A.
    Amin, S. E.
    Ramadan, H. H.
    Tolba, M. F.
    NEURAL COMPUTING & APPLICATIONS, 2013, 23 (7-8): : 2267 - 2279
  • [2] A Neural Network Preprocessing Model for OMI Aerosol Optical Depth Data Assimilation
    Ali, A.
    Amin, S. E.
    Ramadan, H. H.
    Tolba, M. F.
    2012 SEVENTH INTERNATIONAL CONFERENCE ON COMPUTER ENGINEERING & SYSTEMS (ICCES'2012), 2012, : 124 - 131
  • [3] Integration of Neural Network Preprocessing Model for OMI Aerosol Optical Depth Data Assimilation
    Ali, A.
    Amin, S. E.
    Ramadan, H. H.
    Tolba, M. F.
    ADVANCED MACHINE LEARNING TECHNOLOGIES AND APPLICATIONS, 2012, 322 : 496 - 506
  • [4] Improving the Estimation of Daily Aerosol Optical Depth and Aerosol Radiative Effect Using an Optimized Artificial Neural Network
    Qin, Wenmin
    Wang, Lunche
    Lin, Aiwen
    Zhang, Ming
    Bilal, Muhammad
    REMOTE SENSING, 2018, 10 (07):
  • [5] Impact of the OMI aerosol optical depth on analysis increments through coupled meteorology-aerosol data assimilation for an Asian dust storm
    Lee, Ebony
    Zupanski, Milija
    Zupanski, Dusanka
    Park, Seon Ki
    REMOTE SENSING OF ENVIRONMENT, 2017, 193 : 38 - 53
  • [6] MULTI-SENSOR DATA ASSIMILATION OF AEROSOL OPTICAL DEPTH
    Xu, Hui
    Xue, Yong
    Guang, Jie
    Li, Yingjie
    Wang, Ying
    Mei, Linlu
    2011 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2011, : 3253 - 3256
  • [7] Data Rate Enhancement in Optical Camera Communications Using an Artificial Neural Network Equaliser
    Younus, Othman Isam
    Hassan, Navid Bani
    Ghassemlooy, Zabih
    Haigh, Paul Anthony
    Zvanovec, Stanislav
    Alves, Luis Nero
    Hoa Le Minh
    IEEE ACCESS, 2020, 8 : 42656 - 42665
  • [8] Using the OMI aerosol index and absorption aerosol optical depth to evaluate the NASA MERRA Aerosol Reanalysis
    Buchard, V.
    da Silva, A. M.
    Colarco, P. R.
    Darmenov, A.
    Randles, C. A.
    Govindaraju, R.
    Torres, O.
    Campbell, J.
    Spurr, R.
    ATMOSPHERIC CHEMISTRY AND PHYSICS, 2015, 15 (10) : 5743 - 5760
  • [9] Data Assimilation Using Principal Component Analysis and Artificial Neural Network
    Maschio, Celio
    Avansi, Guilherme Daniel
    Schiozer, Denis Jose
    SPE RESERVOIR EVALUATION & ENGINEERING, 2023, 26 (03) : 795 - 812
  • [10] Data Assimilation Using Principal Component Analysis and Artificial Neural Network
    Maschio C.
    Avansi G.D.
    Schiozer D.J.
    SPE Reservoir Evaluation and Engineering, 2023, 26 (03): : 795 - 812