Morley's triangles of a triangle in the isotropic plane

被引:0
|
作者
Kolar-Super, Ruzica [1 ]
Volenec, Vladimir [2 ]
机构
[1] JJ Strossmayer Univ Osijek, Fac Educ, Dept Nat Sci, Cara Hadrijana 10, Osijek 31000, Croatia
[2] Univ Zagreb, Dept Math, Bijenicka Cesta 30, Zagreb 10000, Croatia
关键词
Morley's triangle; Isotropic plane; Angle trisector; Standard triangle;
D O I
10.1007/s00022-024-00721-w
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we define and study Morley's triangles of a triangle in the isotropic plane. We derive the equations of angle trisectors of angles of the standard triangle in the isotropic plane, and utilizing them we get the coordinates of vertices of Morley's triangles of the standard triangle. We investigate relationships between Morley's triangles and the initial triangle, as well as connections with some other triangle elements in the isotropic plane. Finally, we consider some dual concepts of the introduced concepts.
引用
收藏
页数:9
相关论文
共 50 条
  • [1] Gob's Circles of a Triangle in the Isotropic Plane
    Kolar-Super, Ruzica
    JOURNAL OF MATHEMATICS, 2021, 2021
  • [2] COSYMMEDIAN TRIANGLES IN AN ISOTROPIC PLANE
    Kolar-Begovic, Z.
    Kolar-Super, R.
    Volenec, V.
    RAD HRVATSKE AKADEMIJE ZNANOSTI I UMJETNOSTI-MATEMATICKE ZNANOSTI, 2013, 17 (515): : 33 - 42
  • [3] Morley's triangle and lemma
    Bataille, M
    AMERICAN MATHEMATICAL MONTHLY, 2005, 112 (05): : 474 - 474
  • [4] MORLEY TRIANGLES
    REYNOLDS, JB
    MARSH, DCB
    BANKOFF, L
    SIBSON, R
    AMERICAN MATHEMATICAL MONTHLY, 1965, 72 (05): : 548 - &
  • [5] LOCI OF CENTERS IN PENCILS OF TRIANGLES IN THE ISOTROPIC PLANE
    Jurkin, Ema
    RAD HRVATSKE AKADEMIJE ZNANOSTI I UMJETNOSTI-MATEMATICKE ZNANOSTI, 2022, 26 (551): : 155 - 169
  • [6] ON GERGONNE POINT OF THE TRIANGLE IN ISOTROPIC PLANE
    Beban-Brkic, J.
    Volenec, V.
    Kolar-Begovic, Z.
    Kolar-Super, R.
    RAD HRVATSKE AKADEMIJE ZNANOSTI I UMJETNOSTI-MATEMATICKE ZNANOSTI, 2013, 17 (515): : 95 - 106
  • [7] EQUISEGMENTARY LINES OF A TRIANGLE IN THE ISOTROPIC PLANE
    Kolar-Super, Ruzica
    RAD HRVATSKE AKADEMIJE ZNANOSTI I UMJETNOSTI-MATEMATICKE ZNANOSTI, 2022, 26 (551): : 171 - 187
  • [8] Apollonius circles of the triangle in an isotropic plane
    Kolar-Super, Ruzica
    Kolar-Begovic, Zdenka
    Volenec, Vladimir
    TAIWANESE JOURNAL OF MATHEMATICS, 2008, 12 (05): : 1239 - 1249
  • [9] STEINER POINT OF A TRIANGLE IN AN ISOTROPIC PLANE
    Kolar-Super, Ruzica
    Kolar-Begovic, Zdenka
    Volenec, Vladimir
    RAD HRVATSKE AKADEMIJE ZNANOSTI I UMJETNOSTI-MATEMATICKE ZNANOSTI, 2016, 20 (528): : 83 - 95
  • [10] Thebault circles of the triangle in an isotropic plane
    Kolar-Super, Ruzica
    Kolar-Begovic, Zdenka
    Volenec, Vladimir
    MATHEMATICAL COMMUNICATIONS, 2010, 15 (02) : 437 - 442