Nuclear multipole excitations in the framework of self-consistent Hartree–Fock random phase approximation for Skyrme forces

被引:0
|
作者
Ali H Taqi
Ebtihal G Khidher
机构
[1] Kirkuk University,Department of Physics, College of Science
来源
Pramana | 2019年 / 93卷
关键词
Nuclear structure; Skyrme–Hartree–Fock; collective excitations; 21.45.−v; 21.10.−k; 21.60.Ev;
D O I
暂无
中图分类号
学科分类号
摘要
In this study, the fully self-consistent Hartree–Fock (HF)-based random phase approximation (RPA) calculations were done for the 40Ca\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^{40}\hbox {Ca}$$\end{document} and 48Ca\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^{48}\hbox {Ca}$$\end{document} nuclei using 20 Skyrme-type interactions: KDE0, KDE0v1, SLy4, SLy5, SLy6, SK255, SKI2, SKI3, SKI5, SKM, SKMP, SKP, LNS, SGII, RAPT, SV-bas, SV-m56-O, SV-m64-O, SV-min and T6. Having a large number of Skyrme-force parameterisations requires a continuous search for the best for describing the experimental data. To examine our results, we compared the strength functions S(E), the charge density distribution and centroid energies ECEN\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$E_{\mathrm{CEN}}$$\end{document} of the isoscalar giant monopole resonance (ISGMR), Jπ=0+\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$J^{\pi } = 0^{+}$$\end{document}, T=0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$T = 0$$\end{document}, the isovector giant dipole resonance (IVGDR), Jπ=1-\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$J^{\pi } = 1^{-}$$\end{document}, T=1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$T = 1$$\end{document}, and isoscalar giant quadrupole resonance (ISGQR), Jπ=2+\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$J^{\pi } = 2^{+}$$\end{document}, T=0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$T = 0$$\end{document} with the available experimental data. Moreover, we discussed the sensitivities of the centroid energy m1/m0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$m_{1}/m_{0}$$\end{document} and moment m1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$m_{1}$$\end{document} of the S(E) to the bulk properties of nuclear matter (NM), such as KNM\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$K_\mathrm{NM}$$\end{document}, the effective mass m* / m and the enhancement factor κ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\kappa $$\end{document} .
引用
收藏
相关论文
共 50 条
  • [41] Quadratically convergent self-consistent field of projected Hartree-Fock
    Uejima, Motoyuki
    Ten-no, Seiichiro L.
    JOURNAL OF CHEMICAL PHYSICS, 2020, 153 (16):
  • [42] Generalized Bruckner-Hartree-Fock theory and self-consistent RPA
    Dukelsky, J.
    Ropke, G.
    Schuck, P.
    Nuclear Physics, Section A, 628 (01):
  • [43] Study of Octupole Deformation of Radium Isotopes in the Hartree-Fock-Bogoliubov Approximation with Skyrme Forces
    Kuprikov, V., I
    Tarasov, V. N.
    PHYSICS OF ATOMIC NUCLEI, 2021, 84 (06) : 796 - 803
  • [44] Self-consistent Hartree–Fock RPA calculations in 208Pb
    Ali H. Taqi
    Mohammed S. Ali
    Indian Journal of Physics, 2018, 92 : 69 - 80
  • [45] Generalized Bruckner-Hartree-Fock theory and self-consistent RPA
    Dukelsky, J
    Ropke, G
    Schuck, P
    NUCLEAR PHYSICS A, 1998, 628 (01) : 17 - 40
  • [46] SELF-CONSISTENT TIME-DEPENDENT HARTREE-FOCK SCHEME
    JORGENSE.R
    ODDERSHE.J
    RATNER, M
    JOURNAL OF CHEMICAL PHYSICS, 1974, 61 (02): : 710 - 718
  • [47] SELF-CONSISTENT HARTREE-FOCK FUNCTIONS FOR ATOMS IN SPHERICAL BODY
    LUDENA, EV
    ACTA CIENTIFICA VENEZOLANA, 1977, 28 : 144 - 144
  • [48] THE NUCLEAR-POTENTIAL IN THE HARTREE-FOCK APPROXIMATION WITH SKYRME FORCES AND THE T-MATRIX OF NEUTRON-NUCLEUS SCATTERING
    KUPRIKOV, VI
    SOZNIK, AP
    SOVIET JOURNAL OF NUCLEAR PHYSICS-USSR, 1992, 55 (07): : 1005 - 1009
  • [49] Nuclear matter with chiral forces in Brueckner-Hartree-Fock approximation
    Li, Z. H.
    Schulze, H. -J.
    PHYSICAL REVIEW C, 2012, 85 (06):
  • [50] Self-consistent theory of finite Fermi systems vs Skyrme-Hartree-Fock method. Spherical nuclei.
    Saperstein, E. E.
    Tolokonnikov, S. V.
    INTERNATIONAL CONFERENCE ON NUCLEAR STRUCTURE AND RELATED TOPICS (NSRT15), 2016, 107