Nuclear multipole excitations in the framework of self-consistent Hartree–Fock random phase approximation for Skyrme forces

被引:0
|
作者
Ali H Taqi
Ebtihal G Khidher
机构
[1] Kirkuk University,Department of Physics, College of Science
来源
Pramana | 2019年 / 93卷
关键词
Nuclear structure; Skyrme–Hartree–Fock; collective excitations; 21.45.−v; 21.10.−k; 21.60.Ev;
D O I
暂无
中图分类号
学科分类号
摘要
In this study, the fully self-consistent Hartree–Fock (HF)-based random phase approximation (RPA) calculations were done for the 40Ca\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^{40}\hbox {Ca}$$\end{document} and 48Ca\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^{48}\hbox {Ca}$$\end{document} nuclei using 20 Skyrme-type interactions: KDE0, KDE0v1, SLy4, SLy5, SLy6, SK255, SKI2, SKI3, SKI5, SKM, SKMP, SKP, LNS, SGII, RAPT, SV-bas, SV-m56-O, SV-m64-O, SV-min and T6. Having a large number of Skyrme-force parameterisations requires a continuous search for the best for describing the experimental data. To examine our results, we compared the strength functions S(E), the charge density distribution and centroid energies ECEN\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$E_{\mathrm{CEN}}$$\end{document} of the isoscalar giant monopole resonance (ISGMR), Jπ=0+\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$J^{\pi } = 0^{+}$$\end{document}, T=0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$T = 0$$\end{document}, the isovector giant dipole resonance (IVGDR), Jπ=1-\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$J^{\pi } = 1^{-}$$\end{document}, T=1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$T = 1$$\end{document}, and isoscalar giant quadrupole resonance (ISGQR), Jπ=2+\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$J^{\pi } = 2^{+}$$\end{document}, T=0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$T = 0$$\end{document} with the available experimental data. Moreover, we discussed the sensitivities of the centroid energy m1/m0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$m_{1}/m_{0}$$\end{document} and moment m1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$m_{1}$$\end{document} of the S(E) to the bulk properties of nuclear matter (NM), such as KNM\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$K_\mathrm{NM}$$\end{document}, the effective mass m* / m and the enhancement factor κ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\kappa $$\end{document} .
引用
收藏
相关论文
共 50 条
  • [21] Finite size atom: The new quasiparticle in the self-consistent Hartree-Fock approximation
    Bobrov, V. B.
    Trigger, S. A.
    PHYSICS LETTERS A, 2010, 374 (41) : 4188 - 4192
  • [22] The number self-consistent renormalized random phase approximation
    Mariano, A.
    INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 2006, 20 (30-31): : 5334 - 5337
  • [23] Limitations of the number self-consistent random phase approximation
    Mariano, A
    Hirsch, JG
    PHYSICAL REVIEW C, 2000, 61 (05): : 7
  • [24] The number self-consistent renormalized random phase approximation
    Mariano, A.
    RECENT PROGRESS IN MANY-BODY THEORIES, PROCEEDINGS, 2006, 10 : 380 - +
  • [25] USE OF SKYRME FORCES IN SELF-CONSISTENT RPA CALCULATIONS
    KREWALD, S
    KLEMT, V
    SPETH, J
    FAESSLER, A
    NUCLEAR PHYSICS A, 1977, 281 (02) : 166 - 206
  • [26] 0νββ-decay nuclear matrix elements in self-consistent Skyrme quasiparticle random-phase approximation: Uncertainty from pairing interaction
    Lv, W. -L
    Niu, Y. -F.
    Fang, D. -L.
    Yao, J. -M.
    Bai, C. -L.
    Meng, J.
    PHYSICAL REVIEW C, 2023, 108 (05)
  • [27] Collective nuclear excitations with Skyrme-second random-phase approximation
    Gambacurta, D.
    Grasso, M.
    Catara, F.
    PHYSICAL REVIEW C, 2010, 81 (05):
  • [28] Self-Consistent Random Phase Approximation Calculation with Different Skyrme Type Interactions for Some Closed Shell Nuclei
    Kadhim, Amal J.
    Alzubadi, Ali A.
    INTERNATIONAL WORKSHOP IN PHYSICS APPLICATIONS, 2019, 1178
  • [29] Self-consistent Skyrme quasiparticle random-phase approximation for use in axially symmetric nuclei of arbitrary mass
    Terasaki, J.
    Engel, J.
    PHYSICAL REVIEW C, 2010, 82 (03):