Nuclear multipole excitations in the framework of self-consistent Hartree–Fock random phase approximation for Skyrme forces

被引:0
|
作者
Ali H Taqi
Ebtihal G Khidher
机构
[1] Kirkuk University,Department of Physics, College of Science
来源
Pramana | 2019年 / 93卷
关键词
Nuclear structure; Skyrme–Hartree–Fock; collective excitations; 21.45.−v; 21.10.−k; 21.60.Ev;
D O I
暂无
中图分类号
学科分类号
摘要
In this study, the fully self-consistent Hartree–Fock (HF)-based random phase approximation (RPA) calculations were done for the 40Ca\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^{40}\hbox {Ca}$$\end{document} and 48Ca\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^{48}\hbox {Ca}$$\end{document} nuclei using 20 Skyrme-type interactions: KDE0, KDE0v1, SLy4, SLy5, SLy6, SK255, SKI2, SKI3, SKI5, SKM, SKMP, SKP, LNS, SGII, RAPT, SV-bas, SV-m56-O, SV-m64-O, SV-min and T6. Having a large number of Skyrme-force parameterisations requires a continuous search for the best for describing the experimental data. To examine our results, we compared the strength functions S(E), the charge density distribution and centroid energies ECEN\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$E_{\mathrm{CEN}}$$\end{document} of the isoscalar giant monopole resonance (ISGMR), Jπ=0+\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$J^{\pi } = 0^{+}$$\end{document}, T=0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$T = 0$$\end{document}, the isovector giant dipole resonance (IVGDR), Jπ=1-\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$J^{\pi } = 1^{-}$$\end{document}, T=1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$T = 1$$\end{document}, and isoscalar giant quadrupole resonance (ISGQR), Jπ=2+\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$J^{\pi } = 2^{+}$$\end{document}, T=0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$T = 0$$\end{document} with the available experimental data. Moreover, we discussed the sensitivities of the centroid energy m1/m0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$m_{1}/m_{0}$$\end{document} and moment m1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$m_{1}$$\end{document} of the S(E) to the bulk properties of nuclear matter (NM), such as KNM\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$K_\mathrm{NM}$$\end{document}, the effective mass m* / m and the enhancement factor κ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\kappa $$\end{document} .
引用
收藏
相关论文
共 50 条
  • [1] Nuclear multipole excitations in the framework of self-consistent Hartree-Fock random phase approximation for Skyrme forces
    Taqi, Ali H.
    Khidher, Ebtihal G.
    PRAMANA-JOURNAL OF PHYSICS, 2019, 93 (04):
  • [3] Self-consistent Hartree-Fock based random phase approximation and the spurious state mixing
    Agrawal, BK
    Shlomo, S
    Sanzhur, AI
    PHYSICAL REVIEW C, 2003, 67 (03):
  • [4] Self-consistent nuclear mean-field models: example Skyrme-Hartree-Fock
    Erler, J.
    Kluepfel, P.
    Reinhard, P-G
    JOURNAL OF PHYSICS G-NUCLEAR AND PARTICLE PHYSICS, 2011, 38 (03)
  • [5] Self-consistent separable random-phase approximation for Skyrme forces: Giant resonances in axial nuclei
    Nesterenko, V. O.
    Kleinig, W.
    Kvasil, J.
    Vesely, P.
    Reinhard, P. -G.
    Dolci, D. S.
    PHYSICAL REVIEW C, 2006, 74 (06):
  • [6] Coulomb exchange functional with generalized gradient approximation for self-consistent Skyrme Hartree-Fock calculations
    Naito, Tomoya
    Roca-Maza, Xavier
    Colo, Gianluca
    Liang, Haozhao
    PHYSICAL REVIEW C, 2019, 99 (02)
  • [7] Spin M1 excitations in deformed nuclei from self-consistent Hartree-Fock plus random-phase approximation
    Sarriguren, P
    deGuerra, EM
    Nojarov, R
    PHYSICAL REVIEW C, 1996, 54 (02) : 690 - 705
  • [8] Self-consistent theory of finite Fermi systems and Skyrme–Hartree–Fock method
    E. E. Saperstein
    S. V. Tolokonnikov
    Physics of Atomic Nuclei, 2016, 79 : 1030 - 1066
  • [9] Renormalization of relativistic self-consistent Hartree-Fock approximation
    Wu, SS
    Yao, YJ
    EUROPEAN PHYSICAL JOURNAL A, 1998, 3 (01): : 49 - 63
  • [10] THE HARTREE-FOCK APPROXIMATION AND ITS SELF-CONSISTENT GENERALIZATION
    LAMBERT, CJ
    HAGSTON, WE
    PHYSICA STATUS SOLIDI B-BASIC RESEARCH, 1981, 106 (01): : K23 - K26