Compactness, interpolation inequalities for small Lebesgue-Sobolev spaces and applications

被引:0
|
作者
A. Fiorenza
J. M. Rakotoson
机构
[1] Universitá di Napoli “Federico II”,Dipartimento di Costruzioni e Metodi Matematici in Architettura
[2] Istituto per le Applicazioni del Calcolo “Mauro Picone”,Département de Mathématiques UMR 6086
[3] Université de Poitiers,undefined
关键词
System Theory; Sobolev Space; Variational Problem; Critical Exponent; Lebesgue Space;
D O I
暂无
中图分类号
学科分类号
摘要
We study some generalized small Lebesgue spaces and their associated Sobolev spaces. In particular, we prove that small Lebesgue-Sobolev spaces W1,(p(Ω) are compactly embedded in \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^{\frac{np}{n-p}}(\O),\ p<n$$\end{document}, p < n. As an application, we study variational problems involving critical exponents under multiple constraints.
引用
收藏
页码:187 / 203
页数:16
相关论文
共 50 条