Size effect on double-K fracture parameters of concrete based on fracture extreme theory

被引:0
|
作者
Longbang Qing
Yimeng Su
Mowen Dong
Yuehua Cheng
Yang Li
机构
[1] Hebei University of Technology,School of Civil Engineering and Transportation
[2] China Academy of Building Research,College of Civil Engineering
[3] Tongji University,undefined
来源
Archive of Applied Mechanics | 2021年 / 91卷
关键词
Concrete; Size effect; Fracture extreme theory; Cohesive stress distribution assumption; Double-K fracture parameters;
D O I
暂无
中图分类号
学科分类号
摘要
Based on fracture extreme theory (FET), the size effect on initial fracture toughness KIini\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$K_{\mathrm{I}}^{\mathrm{ini}}$$\end{document} and unstable fracture toughness KIun\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$K_{\mathrm{I}}^{\mathrm{un}}$$\end{document} of concrete for three-point bending beam was investigated. Nine groups of geometrically similar specimen were simulated to obtain peak load and critical crack mouth opening displacement, of which specimen depth was from 200 to 1000 mm and initial crack length-to-depth ratios were from 0.1 to 0.6. The KIini\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$K_{\mathrm{I}}^{\mathrm{ini}}$$\end{document} and KIun\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$K_{\mathrm{I}}^{\mathrm{un}}$$\end{document} were calculated by FET and double-K method, in which FET adopted the linear, bilinear, and trilinear cohesive stress distribution assumptions and double-K method only used the linear cohesive stress distribution assumption. With linear cohesive stress distribution assumption, KIini\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$K_{\mathrm{I}}^{\mathrm{ini}}$$\end{document} and KIun\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$K_{\mathrm{I}}^{\mathrm{un}}$$\end{document} determined by FET and double- K method were compared. Then, the influence of specimen depth on KIini\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$K_{\mathrm{I}}^{\mathrm{ini}}$$\end{document} and KIun\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$K_{\mathrm{I}}^{\mathrm{un}}$$\end{document} was discussed. In addition, KIini/KIun\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$K_{\mathrm{I}}^{\mathrm{ini}}/K_{\mathrm{I}}^{\mathrm{un}}$$\end{document} calculated via FET using different cohesive stress distribution assumptions were analyzed.
引用
收藏
页码:427 / 442
页数:15
相关论文
共 50 条
  • [31] Determination of Double-K Fracture Parameters of Concrete Using Bottom-Notched Splitting Test
    Yuan, Wenyan
    Dong, Wei
    Zhang, Binsheng
    Yu, Juyao
    JOURNAL OF MATERIALS IN CIVIL ENGINEERING, 2023, 35 (05)
  • [32] Determination of double-K fracture parameters of concrete using split-tension cube test
    Kumar, Shailendra
    Pandey, S. R.
    COMPUTERS AND CONCRETE, 2012, 9 (02): : 81 - 97
  • [33] Effect of Crack-Depth Ratio on Double-K Fracture Parameter of Reinforced Concrete
    Hu, Shaowei
    Mi, Zhengxiang
    Lu, Jun
    VIBRATION, STRUCTURAL ENGINEERING AND MEASUREMENT II, PTS 1-3, 2012, 226-228 : 937 - 941
  • [34] Determination of double-K fracture toughness of concrete via scaling laws
    Hu, R. L.
    Huang, P. Y.
    Liu, G. W.
    ADVANCES IN HETEROGENEOUS MATERIAL MECHANICS 2008, 2008, : 334 - 337
  • [35] Influence of Steel Rebar Position on Concrete Double-K Fracture Toughness
    Fan, Xiangqian
    Hu, Shaowei
    Lu, Jun
    JOURNAL OF TESTING AND EVALUATION, 2016, 44 (06) : 2361 - 2367
  • [37] Influence of steel rebar position on concrete double-K fracture toughness
    Fan, Xiangqian (xqfan@nhri.cn), 1600, ASTM International (44):
  • [38] Fracture Toughness of Ordinary Plain Concrete Under Three-Point Bending Based on Double-K and Boundary Effect Fracture Models
    Chen, Huating
    Zhuo, Yifan
    Li, Dewang
    Huang, Yan
    MATERIALS, 2024, 17 (21)
  • [39] Double-K fracture parameter of concrete and its size effect by using three-point bending beam method
    Wu, Zhimin
    Xu, Shilang
    Wang, Jinlai
    Liu, Yi
    Shuili Fadian Xuebao/Journal of Hydroelectric Engineering, 2000, (04): : 16 - 24
  • [40] Size Effect on Fracture Parameters of Concrete
    Wei, Demin
    Zhang, Heng
    ADVANCED SCIENCE LETTERS, 2011, 4 (03) : 917 - 921