Modelling of viscoelastic materials using non-ordinary state-based peridynamics

被引:0
|
作者
Yakubu Kasimu Galadima
Selda Oterkus
Erkan Oterkus
Islam Amin
Abdel-Hameed El-Aassar
Hosam Shawky
机构
[1] University of Strathclyde,PeriDynamics Research Centre, Department of Naval Architecture, Ocean and Marine Engineering
[2] Ahmadu Bello University,Department of Civil Engineering
[3] Port Said University,Department of Naval Architecture and Marine Engineering
[4] Desert Research Centre,Egypt Desalination Research Centre of Excellence (EDRC) and Hydrogeochemistry Department
来源
关键词
Peridynamics; Viscoelasticity; Non-ordinary state based; Nonlocal;
D O I
暂无
中图分类号
学科分类号
摘要
This paper proposes a framework for implementing viscoelastic constitutive model from the classical continuum mechanics (CCM) theory within non-ordinary state-based peridynamics (NOSBPD). The motivation stems from the inadequacy of CCM to model very complex material behaviours such as initiation and propagation of cracks and nonlocal behaviour due to size effects. The proposed formulation leverages on the constitutive correspondence between NOSBPD and CCM to incorporate a CCM viscoelastic constitutive model based on hereditary integral into NOSBPD. The combination of hereditary constitutive model and NOSBPD effectively makes this formulation a nonlocal time–space viscoelastic framework where temporal nonlocality is incorporated by a hereditary viscoelastic model which stipulates that the behaviour of a material at any point in time depends on both the present action and the complete history of previous actions on the material, and spatial nonlocality on the other hand is incorporated via the nonlocal mechanism provided by the NOSBPD. For model validation, three benchmark problems were solved using the proposed framework. Results obtained were compared to results from analytical solution and solutions from referenced literature. In addition, parametric study was conducted to determine the influence of nonlocality on numerical prediction. Conclusions drawn from the validation studies presented are that the proposed framework is able to predict viscoelastic responses that agree well with local macro models as well as nonlocal micromodels/nanomodels as reported in the literature.
引用
收藏
页码:527 / 540
页数:13
相关论文
共 50 条
  • [21] Numerical simulation of initiation, propagation and coalescence of cracks using the non-ordinary state-based peridynamics
    Xiaoping Zhou
    Yunteng Wang
    Xiaomin Xu
    International Journal of Fracture, 2016, 201 : 213 - 234
  • [22] 3D analysis of anchor bolt pullout in concrete materials using the non-ordinary state-based peridynamics
    Lu, Jiezhi
    Zhang, Yaoting
    Muhammad, Habib
    Chen, Zhijun
    Xiao, Yunfeng
    Ye, Binbin
    ENGINEERING FRACTURE MECHANICS, 2019, 207 : 68 - 85
  • [23] A higher-order stress point method for non-ordinary state-based peridynamics
    Cui, Hao
    Li, Chunguang
    Zheng, Hong
    ENGINEERING ANALYSIS WITH BOUNDARY ELEMENTS, 2020, 117 : 104 - 118
  • [24] A low cycle fatigue cracking simulation method of non-ordinary state-based peridynamics
    Li, Hongxiang
    Hao, Zhiming
    Li, Pan
    Li, Xiaolong
    Zhang, Dingguo
    INTERNATIONAL JOURNAL OF FATIGUE, 2022, 156
  • [25] Convergence study of stabilized non-ordinary state-based peridynamics for elastic and fracture problems
    Jin, Suyeong
    Hong, Jung-Wuk
    ENGINEERING FRACTURE MECHANICS, 2023, 289
  • [26] A non-ordinary state-based Godunov-peridynamics formulation for strong shocks in solids
    Zhou, Guohua
    Hillman, Michael
    COMPUTATIONAL PARTICLE MECHANICS, 2020, 7 (02) : 365 - 375
  • [27] A non-ordinary state-based Godunov-peridynamics formulation for strong shocks in solids
    Guohua Zhou
    Michael Hillman
    Computational Particle Mechanics, 2020, 7 : 365 - 375
  • [28] Parallelized plastic coupling of non-ordinary state-based peridynamics and finite element method
    Jin, Suyeong
    Kim, Sunwoo
    Hong, Jung-Wuk
    ADVANCES IN ENGINEERING SOFTWARE, 2024, 196
  • [29] Fracture analysis of hyperelastic membrane using bond-associated non-ordinary state-based peridynamics
    Yang, Yang
    Chen, Yujie
    Liu, Yijun
    ENGINEERING FRACTURE MECHANICS, 2024, 303
  • [30] Implicit stabilized non-ordinary state-based peridynamics for finite deformation and fracture analysis of nearly incompressible materials
    Li, Chengxuan
    Zhang, Hanbo
    Pan, Cunliang
    Ye, Hongfei
    Zhang, Hongwu
    Zheng, Yonggang
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2025, 438