Numerical simulation of initiation, propagation and coalescence of cracks using the non-ordinary state-based peridynamics

被引:0
|
作者
Xiaoping Zhou
Yunteng Wang
Xiaomin Xu
机构
[1] Chongqing University,School of Civil Engineering
[2] Chongqing University,State Key Laboratory of Coal Mine Disaster Dynamics and Control
[3] University of Cambridge,Department of Engineering
来源
关键词
Initiation of cracks; Propagation of cracks; Coalescence of cracks; Stress-based failure criterion; Fracture toughness; Non-ordinary state-based peridynamic model;
D O I
暂无
中图分类号
学科分类号
摘要
The stress-based failure criterion is implemented into the non-ordinary state-based peridynamic model. The non-ordinary state-based peridynamic model is developed to simulate the initiation, propagation and coalescence process of cracks subjected to quasi-static and dynamic loads. Three-point-bending tests with a notch offset from the center of the beam are numerically conducted under quasi-static loads. The mode I fracture toughness of Kimachi sandstone has also been evaluated using the non-ordinary state-based peridynamic model by semi-circular bend. Moreover, the proposed method is applied to investigate the effects of arrays of cracks on propagation and coalescence process of multiple cracks subjected to dynamic loads. The numerical results are in good agreement with the previous experimental and numerical results. It is concluded that the non-ordinary state-based peridynamic model is able to analyze fracture problems.
引用
收藏
页码:213 / 234
页数:21
相关论文
共 50 条
  • [1] Numerical simulation of initiation, propagation and coalescence of cracks using the non-ordinary state-based peridynamics
    Zhou, Xiaoping
    Wang, Yunteng
    Xu, Xiaomin
    INTERNATIONAL JOURNAL OF FRACTURE, 2016, 201 (02) : 213 - 234
  • [2] 3D numerical simulation of initiation, propagation and coalescence of cracks using the extended non-ordinary state-based peridynamics
    Shou, Yundong
    Zhou, Xiaoping
    Berto, Filippo
    THEORETICAL AND APPLIED FRACTURE MECHANICS, 2019, 101 : 254 - 268
  • [3] Numerical simulation of propagation and coalescence of flaws in rock materials under compressive loads using the extended non-ordinary state-based peridynamics
    Wang, Yunteng
    Zhou, Xiaoping
    Xu, Xiao
    ENGINEERING FRACTURE MECHANICS, 2016, 163 : 248 - 273
  • [4] Revisit of non-ordinary state-based peridynamics
    Gu, Xin
    Madenci, Erdogan
    Zhang, Qing
    ENGINEERING FRACTURE MECHANICS, 2018, 190 : 31 - 52
  • [5] Numerical simulation of crack propagation and coalescence in pre-cracked rock-like Brazilian disks using the non-ordinary state-based peridynamics
    Zhou, Xiao-Ping
    Wang, Yun-Teng
    INTERNATIONAL JOURNAL OF ROCK MECHANICS AND MINING SCIENCES, 2016, 89 : 235 - 249
  • [6] An improved implicit non-ordinary state-based peridynamics model for modeling crack propagation and coalescence problems
    Yang, Jinmeng
    Shen, Zhenzhong
    Zhang, Jing
    Zhao, Lanhao
    ENGINEERING FRACTURE MECHANICS, 2023, 292
  • [7] Numerical simulation of crack propagation and coalescence in marine cast iron materials using ordinary state-based peridynamics
    Li, Shuang
    Lu, Haining
    Huang, Xiaohua
    Yang, Jianmin
    Sun, Pengfei
    OCEAN ENGINEERING, 2022, 266
  • [8] Numerical simulation of crack propagation and coalescence in marine cast iron materials using ordinary state-based peridynamics
    Li, Shuang
    Lu, Haining
    Huang, Xiaohua
    Yang, Jianmin
    Sun, Pengfei
    Ocean Engineering, 2022, 266
  • [9] Modelling of viscoelastic materials using non-ordinary state-based peridynamics
    Galadima, Yakubu Kasimu
    Oterkus, Selda
    Oterkus, Erkan
    Amin, Islam
    El-Aassar, Abdel-Hameed
    Shawky, Hosam
    ENGINEERING WITH COMPUTERS, 2024, 40 (01) : 527 - 540
  • [10] Modelling of viscoelastic materials using non-ordinary state-based peridynamics
    Yakubu Kasimu Galadima
    Selda Oterkus
    Erkan Oterkus
    Islam Amin
    Abdel-Hameed El-Aassar
    Hosam Shawky
    Engineering with Computers, 2024, 40 : 527 - 540