A unified local convergence analysis of inexact constrained Levenberg–Marquardt methods

被引:3
|
作者
Roger Behling
Andreas Fischer
机构
[1] Instituto Nacional de Matemática Pura e Aplicada,Department of Mathematics, Institute of Numerical Mathematics
[2] Technische Universität Dresden,undefined
来源
Optimization Letters | 2012年 / 6卷
关键词
Constrained equation; Levenberg–Marquardt method; Convergence rate; Inexactness; Non-isolated solution;
D O I
暂无
中图分类号
学科分类号
摘要
The Levenberg–Marquardt method is a regularized Gauss–Newton method for solving systems of nonlinear equations. If an error bound condition holds it is known that local quadratic convergence to a non-isolated solution can be achieved. This result was extended to constrained Levenberg–Marquardt methods for solving systems of equations subject to convex constraints. This paper presents a local convergence analysis for an inexact version of a constrained Levenberg–Marquardt method. It is shown that the best results known for the unconstrained case also hold for the constrained Levenberg–Marquardt method. Moreover, the influence of the regularization parameter on the level of inexactness and the convergence rate is described. The paper improves and unifies several existing results on the local convergence of Levenberg–Marquardt methods.
引用
收藏
页码:927 / 940
页数:13
相关论文
共 50 条
  • [1] A unified local convergence analysis of inexact constrained Levenberg-Marquardt methods
    Behling, Roger
    Fischer, Andreas
    OPTIMIZATION LETTERS, 2012, 6 (05) : 927 - 940
  • [2] Convergence properties of a family of inexact Levenberg-Marquardt methods
    Zhao, Luyao
    Tang, Jingyong
    AIMS MATHEMATICS, 2023, 8 (08): : 18649 - 18664
  • [3] ON QUADRATICAL CONVERGENCE OF INEXACT LEVENBERG-MARQUARDT METHODS UNDER LOCAL ERROR BOUND CONDITION
    Zhang, Yan
    Yu, Carisa Kwok Wai
    Bao, Ji-Feng
    Wang, Jinhua
    JOURNAL OF NONLINEAR AND CONVEX ANALYSIS, 2018, 19 (01) : 123 - 146
  • [4] ON THE CONVERGENCE RATE OF THE INEXACT LEVENBERG-MARQUARDT METHOD
    Fan, Jinyan
    Pan, Jianyu
    JOURNAL OF INDUSTRIAL AND MANAGEMENT OPTIMIZATION, 2011, 7 (01) : 199 - 210
  • [5] Convergence properties of the inexact Levenberg-Marquardt method under local error bound conditions
    Dan, H
    Yamashita, N
    Fukushima, M
    OPTIMIZATION METHODS & SOFTWARE, 2002, 17 (04): : 605 - 626
  • [6] CONVERGENCE PROPERTIES OF INEXACT LEVENBERG-MARQUARDT METHOD UNDER HOLDERIAN LOCAL ERROR BOUND
    Wang, Haiyan
    Fan, Jinyan
    JOURNAL OF INDUSTRIAL AND MANAGEMENT OPTIMIZATION, 2021, 17 (04) : 2265 - 2275
  • [7] Globalization of convergence of the constrained piecewise Levenberg-Marquardt method
    Izmailov, Alexey F.
    Uskov, Evgeniy I.
    Zhibai, Yan
    OPTIMIZATION METHODS & SOFTWARE, 2024,
  • [8] Nonmonotone Levenberg–Marquardt Algorithms and Their Convergence Analysis
    J. Z. Zhang
    L. H. Chen
    Journal of Optimization Theory and Applications, 1997, 92 : 393 - 418
  • [9] Convergence analysis of the Levenberg-Marquardt method
    Luo, Xin-Long
    Liao, Li-Zhi
    Tam, Hon Wah
    OPTIMIZATION METHODS & SOFTWARE, 2007, 22 (04): : 659 - 678
  • [10] On the global convergence of a Levenberg-Marquardt method for constrained nonlinear equations
    Yu Z.
    Journal of Applied Mathematics and Computing, 2004, 16 (1-2) : 183 - 194