ON THE CONVERGENCE RATE OF THE INEXACT LEVENBERG-MARQUARDT METHOD

被引:18
|
作者
Fan, Jinyan [1 ]
Pan, Jianyu [2 ]
机构
[1] Shanghai Jiao Tong Univ, Dept Math, Shanghai 200240, Peoples R China
[2] E China Normal Univ, Dept Math, Shanghai 200062, Peoples R China
关键词
Nonlinear equations; inexact Levenberg-Marquardt method; local error bound condition; convergence rate;
D O I
10.3934/jimo.2011.7.199
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In this paper we study the convergence rate of the inexact Levenberg-Marquardt method for nonlinear equations. Under the local error bound condition which is weaker than nonsingularity, we derive an explicit formula of the convergence order of the inexact LM method, which is a continuous function with respect to not only the LM parameter but also the perturbation vector. The new formula includes many convergence rate results in the literature as its special cases.
引用
收藏
页码:199 / 210
页数:12
相关论文
共 50 条
  • [1] Convergence properties of a family of inexact Levenberg-Marquardt methods
    Zhao, Luyao
    Tang, Jingyong
    AIMS MATHEMATICS, 2023, 8 (08): : 18649 - 18664
  • [2] Inexact Levenberg-Marquardt method for nonlinear equations
    Fan, JY
    Pan, JY
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2004, 4 (04): : 1223 - 1232
  • [3] On the convergence properties of the Levenberg-Marquardt method
    Zhang, JL
    OPTIMIZATION, 2003, 52 (06) : 739 - 756
  • [4] Convergence analysis of the Levenberg-Marquardt method
    Luo, Xin-Long
    Liao, Li-Zhi
    Tam, Hon Wah
    OPTIMIZATION METHODS & SOFTWARE, 2007, 22 (04): : 659 - 678
  • [5] Convergence properties of the inexact Levenberg-Marquardt method under local error bound conditions
    Dan, H
    Yamashita, N
    Fukushima, M
    OPTIMIZATION METHODS & SOFTWARE, 2002, 17 (04): : 605 - 626
  • [6] CONVERGENCE PROPERTIES OF INEXACT LEVENBERG-MARQUARDT METHOD UNDER HOLDERIAN LOCAL ERROR BOUND
    Wang, Haiyan
    Fan, Jinyan
    JOURNAL OF INDUSTRIAL AND MANAGEMENT OPTIMIZATION, 2021, 17 (04) : 2265 - 2275
  • [7] A unified local convergence analysis of inexact constrained Levenberg-Marquardt methods
    Behling, Roger
    Fischer, Andreas
    OPTIMIZATION LETTERS, 2012, 6 (05) : 927 - 940
  • [8] The convergence of a Levenberg-Marquardt method for nonlinear inequalities
    Yin, Hongxia
    Huang, Zheng-Hai
    Qi, Liqun
    NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION, 2008, 29 (5-6) : 687 - 716
  • [9] AN INEXACT LEVENBERG-MARQUARDT METHOD FOR TENSOR EIGENVALUE COMPLEMENTARITY PROBLEM
    Li, Huanhuan
    Du, Shouqiang
    Wang, Yingxiao
    Chen, Miao
    PACIFIC JOURNAL OF OPTIMIZATION, 2020, 16 (01): : 87 - 99
  • [10] Convergence of a stochastic variance reduced Levenberg-Marquardt method
    Shao, Weiyi
    Fan, Jinyan
    COMPUTATIONAL OPTIMIZATION AND APPLICATIONS, 2025, 90 (02) : 417 - 444