Convergence properties of a family of inexact Levenberg-Marquardt methods

被引:0
|
作者
Zhao, Luyao [1 ]
Tang, Jingyong [1 ]
机构
[1] Xinyang Normal Univ, Coll Math & Stat, Xinyang 464000, Peoples R China
来源
AIMS MATHEMATICS | 2023年 / 8卷 / 08期
关键词
nonlinear equations; inexact Levenberg-Marquardt method; global convergence; convergence rate; H delta derian local error bound;
D O I
10.3934/math.2023950
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We present a family of inexact Levenberg-Marquardt (LM) methods for the nonlinear equations which takes more general LM parameters and perturbation vectors. We derive an explicit formula of the convergence order of these inexact LM methods under the Hdderian local error bound condition and the Hdderian continuity of the Jacobian. Moreover, we develop a family of inexact LM methods with a nonmonotone line search and prove that it is globally convergent. Numerical results for solving the linear complementarity problem are reported.
引用
收藏
页码:18649 / 18664
页数:16
相关论文
共 50 条
  • [1] ON THE CONVERGENCE RATE OF THE INEXACT LEVENBERG-MARQUARDT METHOD
    Fan, Jinyan
    Pan, Jianyu
    JOURNAL OF INDUSTRIAL AND MANAGEMENT OPTIMIZATION, 2011, 7 (01) : 199 - 210
  • [2] A unified local convergence analysis of inexact constrained Levenberg-Marquardt methods
    Behling, Roger
    Fischer, Andreas
    OPTIMIZATION LETTERS, 2012, 6 (05) : 927 - 940
  • [3] On the convergence properties of the Levenberg-Marquardt method
    Zhang, JL
    OPTIMIZATION, 2003, 52 (06) : 739 - 756
  • [4] Convergence properties of Levenberg-Marquardt methods with generalized regularization terms
    Ariizumi, Shumpei
    Yamakawa, Yuya
    Yamashita, Nobuo
    APPLIED MATHEMATICS AND COMPUTATION, 2024, 463
  • [5] ON QUADRATICAL CONVERGENCE OF INEXACT LEVENBERG-MARQUARDT METHODS UNDER LOCAL ERROR BOUND CONDITION
    Zhang, Yan
    Yu, Carisa Kwok Wai
    Bao, Ji-Feng
    Wang, Jinhua
    JOURNAL OF NONLINEAR AND CONVEX ANALYSIS, 2018, 19 (01) : 123 - 146
  • [6] Convergence properties of the inexact Levenberg-Marquardt method under local error bound conditions
    Dan, H
    Yamashita, N
    Fukushima, M
    OPTIMIZATION METHODS & SOFTWARE, 2002, 17 (04): : 605 - 626
  • [7] CONVERGENCE PROPERTIES OF INEXACT LEVENBERG-MARQUARDT METHOD UNDER HOLDERIAN LOCAL ERROR BOUND
    Wang, Haiyan
    Fan, Jinyan
    JOURNAL OF INDUSTRIAL AND MANAGEMENT OPTIMIZATION, 2021, 17 (04) : 2265 - 2275
  • [8] Inexact Levenberg-Marquardt method for nonlinear equations
    Fan, JY
    Pan, JY
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2004, 4 (04): : 1223 - 1232
  • [9] Convergence analysis of the Levenberg-Marquardt method
    Luo, Xin-Long
    Liao, Li-Zhi
    Tam, Hon Wah
    OPTIMIZATION METHODS & SOFTWARE, 2007, 22 (04): : 659 - 678
  • [10] Modified inexact Levenberg-Marquardt methods for solving nonlinear least squares problems
    Bao, Jifeng
    Yu, Carisa Kwok Wai
    Wang, Jinhua
    Hu, Yaohua
    Yao, Jen-Chih
    COMPUTATIONAL OPTIMIZATION AND APPLICATIONS, 2019, 74 (02) : 547 - 582