Convergence properties of a family of inexact Levenberg-Marquardt methods

被引:0
|
作者
Zhao, Luyao [1 ]
Tang, Jingyong [1 ]
机构
[1] Xinyang Normal Univ, Coll Math & Stat, Xinyang 464000, Peoples R China
来源
AIMS MATHEMATICS | 2023年 / 8卷 / 08期
关键词
nonlinear equations; inexact Levenberg-Marquardt method; global convergence; convergence rate; H delta derian local error bound;
D O I
10.3934/math.2023950
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We present a family of inexact Levenberg-Marquardt (LM) methods for the nonlinear equations which takes more general LM parameters and perturbation vectors. We derive an explicit formula of the convergence order of these inexact LM methods under the Hdderian local error bound condition and the Hdderian continuity of the Jacobian. Moreover, we develop a family of inexact LM methods with a nonmonotone line search and prove that it is globally convergent. Numerical results for solving the linear complementarity problem are reported.
引用
收藏
页码:18649 / 18664
页数:16
相关论文
共 50 条
  • [21] Globalization of convergence of the constrained piecewise Levenberg-Marquardt method
    Izmailov, Alexey F.
    Uskov, Evgeniy I.
    Zhibai, Yan
    OPTIMIZATION METHODS & SOFTWARE, 2024,
  • [22] On the Convergence of Levenberg-Marquardt Method for Solving Nonlinear Systems
    Fang, Minglei
    Xu, Feng
    Zhu, Zhibin
    Jiang, Lihua
    Geng, Xianya
    BIO-INSPIRED COMPUTING - THEORIES AND APPLICATIONS, BIC-TA 2014, 2014, 472 : 117 - 122
  • [23] On convergence of the Levenberg-Marquardt method underlocal error bound
    Kadam, Rawaa Fadeal
    Al-Abrahemee, Khalid Mindeel Mohammed
    JOURNAL OF INTERDISCIPLINARY MATHEMATICS, 2022, 25 (05) : 1495 - 1508
  • [24] On the inexactness level of robust Levenberg-Marquardt methods
    Fischer, A.
    Shukla, P. K.
    Wang, M.
    OPTIMIZATION, 2010, 59 (02) : 273 - 287
  • [25] ON THE GLOBAL CONVERGENCE OF A PARAMETER-ADJUSTING LEVENBERG-MARQUARDT METHOD
    Qi, Liyan
    Xiao, Xiantao
    Zhang, Liwei
    NUMERICAL ALGEBRA CONTROL AND OPTIMIZATION, 2015, 5 (01): : 25 - 36
  • [26] On the global convergence of a Levenberg-Marquardt method for constrained nonlinear equations
    Yu Z.
    Journal of Applied Mathematics and Computing, 2004, 16 (1-2) : 183 - 194
  • [27] On the Quadratic Convergence of the Levenberg-Marquardt Method without Nonsingularity Assumption
    Jin-yan Fan
    Ya-xiang Yuan
    Computing, 2005, 74 : 23 - 39
  • [28] THE MODIFIED LEVENBERG-MARQUARDT METHOD FOR NONLINEAR EQUATIONS WITH CUBIC CONVERGENCE
    Fan, Jinyan
    MATHEMATICS OF COMPUTATION, 2012, 81 (277) : 447 - 466
  • [29] Convergence of Levenberg-Marquardt method for the inverse problem with an interior measurement
    Jiang, Yu
    Nakamura, Gen
    JOURNAL OF INVERSE AND ILL-POSED PROBLEMS, 2019, 27 (02): : 195 - 215
  • [30] Adaptive Levenberg-Marquardt Algorithm: A New Optimization Strategy for Levenberg-Marquardt Neural Networks
    Yan, Zhiqi
    Zhong, Shisheng
    Lin, Lin
    Cui, Zhiquan
    MATHEMATICS, 2021, 9 (17)