A randomized multi-index sequential Monte Carlo method

被引:0
|
作者
Xinzhu Liang
Shangda Yang
Simon L. Cotter
Kody J. H. Law
机构
[1] University of Manchester,School of Mathematics
来源
Statistics and Computing | 2023年 / 33卷
关键词
Bayesian inverse problems; Sequential Monte Carlo; Multi-index Monte Carlo;
D O I
暂无
中图分类号
学科分类号
摘要
We consider the problem of estimating expectations with respect to a target distribution with an unknown normalizing constant, and where even the unnormalized target needs to be approximated at finite resolution. Under such an assumption, this work builds upon a recently introduced multi-index sequential Monte Carlo (SMC) ratio estimator, which provably enjoys the complexity improvements of multi-index Monte Carlo (MIMC) and the efficiency of SMC for inference. The present work leverages a randomization strategy to remove bias entirely, which simplifies estimation substantially, particularly in the MIMC context, where the choice of index set is otherwise important. Under reasonable assumptions, the proposed method provably achieves the same canonical complexity of MSE-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^{-1}$$\end{document} as the original method (where MSE is mean squared error), but without discretization bias. It is illustrated on examples of Bayesian inverse and spatial statistics problems.
引用
收藏
相关论文
共 50 条
  • [21] The Inverted Multi-Index
    Babenko, Artem
    Lempitsky, Victor
    2012 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2012, : 3069 - 3076
  • [22] The Inverted Multi-Index
    Babenko, Artem
    Lempitsky, Victor
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2015, 37 (06) : 1247 - 1260
  • [23] SEQUENTIAL MONTE CARLO
    HALTON, JH
    PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 1962, 58 (JAN): : 57 - &
  • [24] Economic Analysis for Small Hydroelectric Power Plant using Extended Multi-Index Methodology - An Approach Stochastic by the Monte Carlo Simulation
    Caricimi, R.
    Lima, J. D.
    IEEE LATIN AMERICA TRANSACTIONS, 2018, 16 (08) : 2184 - 2191
  • [25] A Deterministic Sequential Monte Carlo Method for Haplotype Inference
    Liang, Kuo-ching
    Wang, Xiaodong
    IEEE JOURNAL OF SELECTED TOPICS IN SIGNAL PROCESSING, 2008, 2 (03) : 322 - 331
  • [26] Novel sequential Monte Carlo method to target tracking
    School of Electronics and Information Engineering, Beijing University of Aeronautics and Astronautics, Beijing 100083, China
    Dianzi Yu Xinxi Xuebao, 2007, 9 (2120-2123): : 2120 - 2123
  • [27] An Annealed Sequential Monte Carlo Method for Bayesian Phylogenetics
    Wang, Liangliang
    Wang, Shijia
    Bouchard-Cote, Alexandre
    SYSTEMATIC BIOLOGY, 2020, 69 (01) : 155 - 183
  • [28] A SEQUENTIAL REGRESSION METHOD IN MONTE-CARLO STUDIES
    MIHALKO, D
    TONG, YL
    JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 1980, 12 (01) : 41 - 50
  • [29] A sequential Monte Carlo method for Bayesian face recognition
    Matsui, Atsushi
    Clippingdale, Simon
    Matsumoto, Takashi
    STRUCTURAL, SYNTACTIC, AND STATISTICAL PATTERN RECOGNITION, PROCEEDINGS, 2006, 4109 : 578 - 586
  • [30] Method for Solution of the Multi-Index Transportation Problems with Fuzzy Parameters
    Kosenko, O. V.
    Sinyavskaya, E. D.
    Shestova, E. A.
    Kosenko, E. Yu.
    Chemes, O. M.
    PROCEEDINGS OF THE XIX IEEE INTERNATIONAL CONFERENCE ON SOFT COMPUTING AND MEASUREMENTS (SCM 2016), 2016, : 179 - 182