A randomized multi-index sequential Monte Carlo method

被引:0
|
作者
Xinzhu Liang
Shangda Yang
Simon L. Cotter
Kody J. H. Law
机构
[1] University of Manchester,School of Mathematics
来源
Statistics and Computing | 2023年 / 33卷
关键词
Bayesian inverse problems; Sequential Monte Carlo; Multi-index Monte Carlo;
D O I
暂无
中图分类号
学科分类号
摘要
We consider the problem of estimating expectations with respect to a target distribution with an unknown normalizing constant, and where even the unnormalized target needs to be approximated at finite resolution. Under such an assumption, this work builds upon a recently introduced multi-index sequential Monte Carlo (SMC) ratio estimator, which provably enjoys the complexity improvements of multi-index Monte Carlo (MIMC) and the efficiency of SMC for inference. The present work leverages a randomization strategy to remove bias entirely, which simplifies estimation substantially, particularly in the MIMC context, where the choice of index set is otherwise important. Under reasonable assumptions, the proposed method provably achieves the same canonical complexity of MSE-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^{-1}$$\end{document} as the original method (where MSE is mean squared error), but without discretization bias. It is illustrated on examples of Bayesian inverse and spatial statistics problems.
引用
收藏
相关论文
共 50 条
  • [1] A randomized multi-index sequential Monte Carlo method
    Liang, Xinzhu
    Yang, Shangda
    Cotter, Simon L. L.
    Law, Kody J. H.
    STATISTICS AND COMPUTING, 2023, 33 (05)
  • [2] A MULTI-INDEX MARKOV CHAIN MONTE CARLO METHOD
    Jasra, Ajay
    Kamatani, Kengo
    Law, Kody J. H.
    Zhou, Yan
    INTERNATIONAL JOURNAL FOR UNCERTAINTY QUANTIFICATION, 2018, 8 (01) : 61 - 73
  • [3] Unbiased multi-index Monte Carlo
    Crisan, Dan
    Del Moral, Pierre
    Houssineau, Jeremie
    Jasra, Ajay
    STOCHASTIC ANALYSIS AND APPLICATIONS, 2018, 36 (02) : 257 - 273
  • [4] Multi-index Sequential Monte Carlo Ratio Estimators for Bayesian Inverse problems
    Jasra, Ajay
    Law, Kody J. H.
    Walton, Neil
    Yang, Shangda
    FOUNDATIONS OF COMPUTATIONAL MATHEMATICS, 2024, 24 (04) : 1249 - 1304
  • [5] MULTI-INDEX SEQUENTIAL MONTE CARLO METHODS FOR PARTIALLY OBSERVED STOCHASTIC PARTIAL DIFFERENTIAL EQUATIONS
    Jasra, Ajay
    Law, Kody J. H.
    Xu, Yaxian
    INTERNATIONAL JOURNAL FOR UNCERTAINTY QUANTIFICATION, 2021, 11 (03) : 1 - 25
  • [6] Multi-index Monte Carlo: when sparsity meets sampling
    Abdul-Lateef Haji-Ali
    Fabio Nobile
    Raúl Tempone
    Numerische Mathematik, 2016, 132 : 767 - 806
  • [7] Multi-index Monte Carlo: when sparsity meets sampling
    Haji-Ali, Abdul-Lateef
    Nobile, Fabio
    Tempone, Raul
    NUMERISCHE MATHEMATIK, 2016, 132 (04) : 767 - 806
  • [8] ANALYSIS OF MULTI-INDEX MONTE CARLO ESTIMATORS FOR A ZAKAI SPDE
    Reisinger, Christoph
    Wang, Zhenru
    JOURNAL OF COMPUTATIONAL MATHEMATICS, 2018, 36 (02) : 202 - 236
  • [9] Multilevel and Multi-index Monte Carlo methods for the McKean–Vlasov equation
    Abdul-Lateef Haji-Ali
    Raúl Tempone
    Statistics and Computing, 2018, 28 : 923 - 935
  • [10] A MULTI-INDEX QUASI-MONTE CARLO ALGORITHM FOR LOGNORMAL DIFFUSION PROBLEMS
    Robbe, Pieterjan
    Nuyens, Dirk
    Vandewalle, Stefan
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2017, 39 (05): : S851 - S872