Incremental quantile estimation

被引:10
|
作者
Tschumitschew K. [1 ]
Klawonn F. [2 ]
机构
[1] Department of Computer Science, Ostfalia University of Applied Sciences, 38302 Wolfenbuettel
[2] Bioinformatics and Statistics, Helmholtz Centre for Infection Research, 38124 Braunschweig
关键词
Change detection; Incremental estimation; Probabilistic algorithm; Quantile estimation;
D O I
10.1007/s12530-010-9017-7
中图分类号
学科分类号
摘要
Quantiles play an important role in data analysis. On-line estimation of quantiles for streaming data- i.e.data arriving step by step over time-especially with devices with limited memory and computation capacity like electronic control units is not as simple as incremental or recursive estimation of characteristics like the mean (expected value) or the variance. In this paper, we propose an algorithm for incremental quantile estimation that overcomes restrictions of previously described techniques. We also develop a statistical test for our algorithm to detect changes, so that the on-line estimation of the quantiles can be carried out in an adaptive or evolving manner. Besides a statistical analysis of our algorithm, we also provide experimental results comparing our algorithm with a recursive quantile estimation technique which is restricted to continuous random variables. © Springer-Verlag 2010.
引用
收藏
页码:253 / 264
页数:11
相关论文
共 50 条
  • [41] Bayesian nonparametric quantile process regression and estimation of marginal quantile effects
    Xu, Steven G.
    Reich, Brian J.
    BIOMETRICS, 2023, 79 (01) : 151 - 164
  • [42] Nonparametric conditional quantile estimation: A locally weighted quantile kernel approach
    Racine, Jeffrey S.
    Li, Kevin
    JOURNAL OF ECONOMETRICS, 2017, 201 (01) : 72 - 94
  • [43] Estimation of quantile ratios of the Dagum distribution
    Zielinski, Wojciech
    Jedrzejczak, Alina
    Pekasiewicz, Dorota
    12TH PROFESSOR ALEKSANDER ZELIAS INTERNATIONAL CONFERENCE ON MODELLING AND FORECASTING OF SOCIO-ECONOMIC PHENOMENA, 2018, 1 : 603 - 611
  • [44] Noncrossing quantile regression curve estimation
    Bondell, Howard D.
    Reich, Brian J.
    Wang, Huixia
    BIOMETRIKA, 2010, 97 (04) : 825 - 838
  • [45] Estimation of quantile oriented sensitivity indices
    Maume-Deschamps, Veronique
    Niang, Ibrahima
    STATISTICS & PROBABILITY LETTERS, 2018, 134 : 122 - 127
  • [46] ON THE ESTIMATION OF THE QUANTILE DENSITY-FUNCTION
    FALK, M
    STATISTICS & PROBABILITY LETTERS, 1986, 4 (02) : 69 - 73
  • [47] QUANTILE BASED ESTIMATION OF SCALE AND DEPENDENCE
    Tarr, Garth
    BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2015, 92 (01) : 173 - 175
  • [48] Two-phase quantile estimation
    Chen, EJ
    PROCEEDINGS OF THE 2002 WINTER SIMULATION CONFERENCE, VOLS 1 AND 2, 2002, : 447 - 455
  • [49] Quantile Estimation with Latin Hypercube Sampling
    Dong, Hui
    Nakayama, Marvin K.
    OPERATIONS RESEARCH, 2017, 65 (06) : 1678 - 1695
  • [50] Nonparametric estimation of quantile density function
    Soni, Pooja
    Dewan, Isha
    Jain, Kanchan
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2012, 56 (12) : 3876 - 3886