Incremental quantile estimation

被引:10
|
作者
Tschumitschew K. [1 ]
Klawonn F. [2 ]
机构
[1] Department of Computer Science, Ostfalia University of Applied Sciences, 38302 Wolfenbuettel
[2] Bioinformatics and Statistics, Helmholtz Centre for Infection Research, 38124 Braunschweig
关键词
Change detection; Incremental estimation; Probabilistic algorithm; Quantile estimation;
D O I
10.1007/s12530-010-9017-7
中图分类号
学科分类号
摘要
Quantiles play an important role in data analysis. On-line estimation of quantiles for streaming data- i.e.data arriving step by step over time-especially with devices with limited memory and computation capacity like electronic control units is not as simple as incremental or recursive estimation of characteristics like the mean (expected value) or the variance. In this paper, we propose an algorithm for incremental quantile estimation that overcomes restrictions of previously described techniques. We also develop a statistical test for our algorithm to detect changes, so that the on-line estimation of the quantiles can be carried out in an adaptive or evolving manner. Besides a statistical analysis of our algorithm, we also provide experimental results comparing our algorithm with a recursive quantile estimation technique which is restricted to continuous random variables. © Springer-Verlag 2010.
引用
收藏
页码:253 / 264
页数:11
相关论文
共 50 条
  • [31] An implementation for regression quantile estimation
    Yee, TW
    COMPSTAT 2002: PROCEEDINGS IN COMPUTATIONAL STATISTICS, 2002, : 3 - 14
  • [32] Nonparametric recursive quantile estimation
    Kohler, Michael
    Krzyzak, Adam
    Walk, Harro
    STATISTICS & PROBABILITY LETTERS, 2014, 93 : 102 - 107
  • [33] Quantile estimation in successive sampling
    Singh, Housila P.
    Tailor, Ritesh
    Singh, Sarjinder
    Kim, Jong-Min
    JOURNAL OF THE KOREAN STATISTICAL SOCIETY, 2007, 36 (04) : 543 - 556
  • [34] Quantile estimation of heterogenous panel quantile model with group structure
    Li, Donglin
    Wang, Wenyue
    Ren, Yanyan
    ECONOMICS LETTERS, 2024, 241
  • [35] Bayesian estimation of quantile distributions
    Allingham, D.
    King, R. A. R.
    Mengersen, K. L.
    STATISTICS AND COMPUTING, 2009, 19 (02) : 189 - 201
  • [36] Kernel Estimation of Quantile Sensitivities
    Liu, Guangwu
    Hong, Liu Jeff
    NAVAL RESEARCH LOGISTICS, 2009, 56 (06) : 511 - 525
  • [37] INCREMENTAL CONDITION ESTIMATION
    BISCHOF, CH
    SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 1990, 11 (02) : 312 - 322
  • [38] On bivariate ranked set sampling for distribution and quantile estimation and quantile interval estimation using ratio estimator
    Samawi, HM
    Al-Saleh, MF
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2004, 33 (08) : 1801 - 1819
  • [39] Quantile adaptive lasso: variable selection for quantile treatment effect estimation
    Liu, Yahang
    Wei, Kecheng
    Huang, Chen
    Yu, Yongfu
    Qin, Guoyou
    JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2025, 95 (02) : 239 - 257
  • [40] Neural networks for quantile claim amount estimation: a quantile regression approach
    Laporta, Alessandro G.
    Levantesi, Susanna
    Petrella, Lea
    ANNALS OF ACTUARIAL SCIENCE, 2024, 18 (01) : 30 - 50