Incremental quantile estimation

被引:10
|
作者
Tschumitschew K. [1 ]
Klawonn F. [2 ]
机构
[1] Department of Computer Science, Ostfalia University of Applied Sciences, 38302 Wolfenbuettel
[2] Bioinformatics and Statistics, Helmholtz Centre for Infection Research, 38124 Braunschweig
关键词
Change detection; Incremental estimation; Probabilistic algorithm; Quantile estimation;
D O I
10.1007/s12530-010-9017-7
中图分类号
学科分类号
摘要
Quantiles play an important role in data analysis. On-line estimation of quantiles for streaming data- i.e.data arriving step by step over time-especially with devices with limited memory and computation capacity like electronic control units is not as simple as incremental or recursive estimation of characteristics like the mean (expected value) or the variance. In this paper, we propose an algorithm for incremental quantile estimation that overcomes restrictions of previously described techniques. We also develop a statistical test for our algorithm to detect changes, so that the on-line estimation of the quantiles can be carried out in an adaptive or evolving manner. Besides a statistical analysis of our algorithm, we also provide experimental results comparing our algorithm with a recursive quantile estimation technique which is restricted to continuous random variables. © Springer-Verlag 2010.
引用
收藏
页码:253 / 264
页数:11
相关论文
共 50 条
  • [1] An Adaptive and Incremental Approach to Quantile Estimation
    Joseph, Ajin George
    Bhatnagar, Shalabh
    2019 IEEE 58TH CONFERENCE ON DECISION AND CONTROL (CDC), 2019, : 6025 - 6031
  • [2] Multiplicative Update Methods for Incremental Quantile Estimation
    Yazidi, Anis
    Hammer, Hugo
    IEEE TRANSACTIONS ON CYBERNETICS, 2019, 49 (03) : 746 - 756
  • [3] Monitoring networked applications with incremental quantile estimation - Comment
    Lawrence, Earl
    Michailidis, George
    Nair, Vijayan N.
    STATISTICAL SCIENCE, 2006, 21 (04) : 479 - 482
  • [4] Monitoring networked applications with incremental quantile estimation - Rejoinder
    Chambers, John M.
    James, David A.
    Lambert, Diane
    Wiel, Scott Vander
    STATISTICAL SCIENCE, 2006, 21 (04) : 485 - 486
  • [5] Higher-Fidelity Frugal and Accurate Quantile Estimation Using a Novel Incremental Discretized Paradigm
    Yazidi, Anis
    Hammer, Hugo
    Oommen, B. John
    IEEE ACCESS, 2018, 6 : 24362 - 24374
  • [6] Nonparametric quantile estimation
    Takeuchi, Ichiro
    Le, Quoc V.
    Sears, Timothy D.
    Smola, Alexander J.
    JOURNAL OF MACHINE LEARNING RESEARCH, 2006, 7 : 1231 - 1264
  • [7] On quantile estimation by bootstrap
    Brodin, E
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2006, 50 (06) : 1398 - 1406
  • [8] Quantile Sensitivity Estimation
    Heidergott, Bernd
    Volk-Makarewicz, Warren
    NETWORK CONTROL AND OPTIMIZATION, PROCEEDINGS, 2009, 5894 : 16 - 29
  • [9] Quantile and histogram estimation
    Chen, EJ
    Kelton, WD
    WSC'01: PROCEEDINGS OF THE 2001 WINTER SIMULATION CONFERENCE, VOLS 1 AND 2, 2001, : 451 - 459
  • [10] QUANTILE INTERVAL ESTIMATION
    KAIGH, WD
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 1983, 12 (21) : 2427 - 2443