Building a Lucy hybrid model for grocery sales forecasting based on time series

被引:0
|
作者
Duy Thanh Tran
Jun-Ho Huh
Jae-Hwan Kim
机构
[1] University of Economics and Law,Faculty of Information Systems
[2] Vietnam National University Ho Chi Minh City,Department of Data Informatics
[3] (National) Korea Maritime and Ocean University,Department of Data Science
[4] (National) Korea Maritime and Ocean University,undefined
来源
关键词
Lucy hybrid; Hybrid model; Forecast; Grocery sales; Machine learning; Time series; Trend;
D O I
暂无
中图分类号
学科分类号
摘要
Nowadays, time series data are applied in many fields, such as economics, medicine, biology, science, society, nature, environment, or typically in weather forecasting. Time series is a tool that includes methodological formulas and models to help us analyze time series data, extract potentially valuable information, capture historical fluctuations, present and support forecasts of the value of the research object in future. There are many models and methods of time series analysis that have been researched and improved these days for trend analysis and forecasts. Techniques related to time series data processing include linear regression with time series with two features unique to time series lags and time steps, the trend for model long-term changes with moving averages and time dummy, seasonality to create indicators, Fourier features to capture periodic change, and time series as features to predict the future from the pass with a lag embedding. In this article, we build a new hybrid model called Lucy Hybrid that provides full steps in the machine learning process including data pre-processing, training model, evaluation model with Mean Square Error (MSE), Root-Mean-Square Error (RMSE) and Mean Absolute Error (MAE) to compare and get the best model quality. The model also provides functions like storage and loading model to support researchers to reuse and save time on training model. In the Lucy hybrid, we also support the trend and forecast function for time series data. We experiment with a large dataset of more than 3,000,000 records from a large Ecuadorian-based grocery retailer, and we used Linear Regression, Elastic Net, Lasso, Ridge and Extra Trees Regressor, Random Forest Regressor, K-Neighbors Regressor, MLP Regressor, XGB Regressor to experiment and create 20 Lucy hybrid sample models and publish a full source code for researchers to use to expand the model.
引用
收藏
页码:4048 / 4083
页数:35
相关论文
共 50 条
  • [41] A multiset based forecasting model for fuzzy time series
    Vamitha, V.
    Rajaram, S.
    HACETTEPE JOURNAL OF MATHEMATICS AND STATISTICS, 2015, 44 (04): : 965 - 973
  • [42] A Set of Time Series Forecasting Model Based on the Difference
    Feng, Hao
    Wang, Hongxu
    Yin, Chengguo
    Lu, Xiaoli
    Fu, Xiaofang
    PROCEEDINGS OF THE 2017 INTERNATIONAL CONFERENCE ON APPLIED MATHEMATICS, MODELING AND SIMULATION (AMMS 2017), 2017, 153 : 132 - 134
  • [43] A feature-based hybrid ARIMA-ANN model for univariate time series forecasting
    Buyuksahin, Umit Cavus
    Ertekin, Seyda
    JOURNAL OF THE FACULTY OF ENGINEERING AND ARCHITECTURE OF GAZI UNIVERSITY, 2020, 35 (01): : 467 - 478
  • [44] A hybrid modelling method for time series forecasting based on a linear regression model and deep learning
    Wenquan Xu
    Hui Peng
    Xiaoyong Zeng
    Feng Zhou
    Xiaoying Tian
    Xiaoyan Peng
    Applied Intelligence, 2019, 49 : 3002 - 3015
  • [45] Forecasting leading industry stock prices based on a hybrid time-series forecast model
    Tsai, Ming-Chi
    Cheng, Ching-Hsue
    Tsai, Meei-Ing
    Shiu, Huei-Yuan
    PLOS ONE, 2018, 13 (12):
  • [46] A Dilated Convolutional Based Model for Time Series Forecasting
    Mishra K.
    Basu S.
    Maulik U.
    SN Computer Science, 2021, 2 (2)
  • [47] A Novel Hybrid Deep Learning Model for Sugar Price Forecasting Based on Time Series Decomposition
    Zhang, Jinlai
    Meng, Yanmei
    Wei, Jin
    Chen, Jie
    Qin, Johnny
    Mathematical Problems in Engineering, 2021, 2021
  • [48] A Novel Hybrid Deep Learning Model for Sugar Price Forecasting Based on Time Series Decomposition
    Zhang, Jinlai
    Meng, Yanmei
    Wei, Jin
    Chen, Jie
    Qin, Johnny
    MATHEMATICAL PROBLEMS IN ENGINEERING, 2021, 2021
  • [49] A new hybrid time series forecasting model based on the neutrosophic set and quantum optimization algorithm
    Singh, Pritpal
    Huang, Yo-Ping
    COMPUTERS IN INDUSTRY, 2019, 111 : 121 - 139
  • [50] A hybrid forecasting model for enrollments based on aggregated fuzzy time series and particle swarm optimization
    Huang, Yao-Lin
    Horng, Shi-Jinn
    He, Mingxing
    Fan, Pingzhi
    Kao, Tzong-Wann
    Khan, Muhammad Khurram
    Lai, Jui-Lin
    Kuo, I-Hong
    EXPERT SYSTEMS WITH APPLICATIONS, 2011, 38 (07) : 8014 - 8023