Building a Lucy hybrid model for grocery sales forecasting based on time series

被引:0
|
作者
Duy Thanh Tran
Jun-Ho Huh
Jae-Hwan Kim
机构
[1] University of Economics and Law,Faculty of Information Systems
[2] Vietnam National University Ho Chi Minh City,Department of Data Informatics
[3] (National) Korea Maritime and Ocean University,Department of Data Science
[4] (National) Korea Maritime and Ocean University,undefined
来源
关键词
Lucy hybrid; Hybrid model; Forecast; Grocery sales; Machine learning; Time series; Trend;
D O I
暂无
中图分类号
学科分类号
摘要
Nowadays, time series data are applied in many fields, such as economics, medicine, biology, science, society, nature, environment, or typically in weather forecasting. Time series is a tool that includes methodological formulas and models to help us analyze time series data, extract potentially valuable information, capture historical fluctuations, present and support forecasts of the value of the research object in future. There are many models and methods of time series analysis that have been researched and improved these days for trend analysis and forecasts. Techniques related to time series data processing include linear regression with time series with two features unique to time series lags and time steps, the trend for model long-term changes with moving averages and time dummy, seasonality to create indicators, Fourier features to capture periodic change, and time series as features to predict the future from the pass with a lag embedding. In this article, we build a new hybrid model called Lucy Hybrid that provides full steps in the machine learning process including data pre-processing, training model, evaluation model with Mean Square Error (MSE), Root-Mean-Square Error (RMSE) and Mean Absolute Error (MAE) to compare and get the best model quality. The model also provides functions like storage and loading model to support researchers to reuse and save time on training model. In the Lucy hybrid, we also support the trend and forecast function for time series data. We experiment with a large dataset of more than 3,000,000 records from a large Ecuadorian-based grocery retailer, and we used Linear Regression, Elastic Net, Lasso, Ridge and Extra Trees Regressor, Random Forest Regressor, K-Neighbors Regressor, MLP Regressor, XGB Regressor to experiment and create 20 Lucy hybrid sample models and publish a full source code for researchers to use to expand the model.
引用
收藏
页码:4048 / 4083
页数:35
相关论文
共 50 条
  • [31] A novel hybrid time series forecasting model based on neutrosophic-PSO approach
    Singh, Pritpal
    INTERNATIONAL JOURNAL OF MACHINE LEARNING AND CYBERNETICS, 2020, 11 (08) : 1643 - 1658
  • [32] An ARIMA-ANN Hybrid Model for Time Series Forecasting
    Wang, Li
    Zou, Haofei
    Su, Jia
    Li, Ling
    Chaudhry, Sohail
    SYSTEMS RESEARCH AND BEHAVIORAL SCIENCE, 2013, 30 (03) : 244 - 259
  • [33] Hybrid Method for Forecasting Next Values of Time Series for Intelligent Building Control
    Stachno, Andrzej
    Jablonski, Andrzej
    COMPUTER AIDED SYSTEMS THEORY - EUROCAST 2015, 2015, 9520 : 822 - 829
  • [34] Sales forecasting using time series and neural networks
    Ansuj, AP
    Camargo, ME
    Radharamanan, R
    Petry, DG
    COMPUTERS & INDUSTRIAL ENGINEERING, 1996, 31 (1-2) : 421 - 424
  • [35] Neural network and time series as tools for sales forecasting
    University of Caxias do Sul, CAMVA, Vacaria, RS, Brazil
    不详
    I2S Informatica Sistemas Servicos; Oni; Associacao Comercial do Porto; Camara Municipal do Porto; Sogrape, 1600, 476-478 (2004):
  • [37] Building time series forecasting model by independent component analysis mechanism
    Lin, Jin-Cherng
    Li, Yung-Hsin
    Liu, Cheng-Hsiung
    WORLD CONGRESS ON ENGINEERING 2007, VOLS 1 AND 2, 2007, : 1010 - +
  • [38] A Hybrid System Based on Dynamic Selection for Time Series Forecasting
    de Oliveira, Joao F. L.
    Silva, Eraylson G.
    de Mattos Neto, Paulo S. G.
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2022, 33 (08) : 3251 - 3263
  • [39] Frequency-based ensemble forecasting model for time series forecasting
    Waddah Saeed
    Computational and Applied Mathematics, 2022, 41
  • [40] Frequency-based ensemble forecasting model for time series forecasting
    Saeed, Waddah
    COMPUTATIONAL & APPLIED MATHEMATICS, 2022, 41 (02):