We prove the following converse of Riemann’s Theorem: let (A,Θ)\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$(A,\Theta )$$\end{document} be an indecomposable principally polarized abelian variety whose theta divisor can be written as a sum of a curve and a codimension two subvariety Θ=C+Y\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\Theta =C+Y$$\end{document}. Then C is smooth, A is the Jacobian of C, and Y is a translate of Wg-2(C)\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$W_{g-2}(C)$$\end{document}. As applications, we determine all theta divisors that are dominated by a product of curves and characterize Jacobians by the existence of a d-dimensional subvariety with curve summand whose twisted ideal sheaf is a generic vanishing sheaf.