Theta divisors with curve summands and the Schottky problem

被引:0
|
作者
Stefan Schreieder
机构
[1] Max-Planck-Institut für Mathematik,Mathematisches Institut
[2] Universität Bonn,undefined
来源
Mathematische Annalen | 2016年 / 365卷
关键词
Primary 14H42; 14K12; 14E05; Secondary 14H40; 14K25;
D O I
暂无
中图分类号
学科分类号
摘要
We prove the following converse of Riemann’s Theorem: let (A,Θ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(A,\Theta )$$\end{document} be an indecomposable principally polarized abelian variety whose theta divisor can be written as a sum of a curve and a codimension two subvariety Θ=C+Y\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Theta =C+Y$$\end{document}. Then C is smooth, A is the Jacobian of C, and Y is a translate of Wg-2(C)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$W_{g-2}(C)$$\end{document}. As applications, we determine all theta divisors that are dominated by a product of curves and characterize Jacobians by the existence of a d-dimensional subvariety with curve summand whose twisted ideal sheaf is a generic vanishing sheaf.
引用
收藏
页码:1017 / 1039
页数:22
相关论文
共 50 条
  • [31] Tangent cones to generalised theta divisors and generic injectivity of the theta map
    Hitching, George H.
    Hoff, Michael
    COMPOSITIO MATHEMATICA, 2017, 153 (12) : 2643 - 2657
  • [32] On the Schottky problem for genus-five Jacobians with a vanishing theta-null
    Agostini, Daniele
    Chua, Lynn
    ANNALI DELLA SCUOLA NORMALE SUPERIORE DI PISA-CLASSE DI SCIENZE, 2021, 22 (01) : 333 - 350
  • [33] 2-torsion points on theta divisors
    Pareschi, Giuseppe
    Manni, Riccardo Salvati
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2021, 2021 (19) : 14616 - 14628
  • [34] Effective very ampleness for generalized theta divisors
    Esteves, E
    Popa, M
    DUKE MATHEMATICAL JOURNAL, 2004, 123 (03) : 429 - 444
  • [35] Genus 2 curves and generalized theta divisors
    Brivio, Sonia
    Favale, Filippo F.
    BULLETIN DES SCIENCES MATHEMATIQUES, 2019, 155 : 112 - 140
  • [36] Torsion on theta divisors of hyperelliptic Fermat Jacobians
    Grant, D
    COMPOSITIO MATHEMATICA, 2004, 140 (06) : 1432 - 1438
  • [37] Singularities of theta divisors and the geometry of A5
    Farkas, G.
    Grushevsky, S.
    Manni, R. Salvati
    Verra, A.
    JOURNAL OF THE EUROPEAN MATHEMATICAL SOCIETY, 2014, 16 (09) : 1817 - 1848
  • [38] Compactified Jacobians, Abel maps and Theta divisors
    Caporaso, Lucia
    CURVES AND ABELIAN VARIETIES, 2008, 465 : 1 - 23
  • [39] MODULI OF PAIRS AND GENERALIZED THETA-DIVISORS
    RAGHAVENDRA, N
    VISHWANATH, PA
    TOHOKU MATHEMATICAL JOURNAL, 1994, 46 (03) : 321 - 340
  • [40] ALGEBRAIC SERIES OF DIVISORS ON A CURVE AND ON A SURFACE
    CILIBERTO, C
    GHIONE, F
    ANNALI DI MATEMATICA PURA ED APPLICATA, 1984, 136 : 329 - 353