Theta divisors with curve summands and the Schottky problem

被引:0
|
作者
Stefan Schreieder
机构
[1] Max-Planck-Institut für Mathematik,Mathematisches Institut
[2] Universität Bonn,undefined
来源
Mathematische Annalen | 2016年 / 365卷
关键词
Primary 14H42; 14K12; 14E05; Secondary 14H40; 14K25;
D O I
暂无
中图分类号
学科分类号
摘要
We prove the following converse of Riemann’s Theorem: let (A,Θ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(A,\Theta )$$\end{document} be an indecomposable principally polarized abelian variety whose theta divisor can be written as a sum of a curve and a codimension two subvariety Θ=C+Y\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Theta =C+Y$$\end{document}. Then C is smooth, A is the Jacobian of C, and Y is a translate of Wg-2(C)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$W_{g-2}(C)$$\end{document}. As applications, we determine all theta divisors that are dominated by a product of curves and characterize Jacobians by the existence of a d-dimensional subvariety with curve summand whose twisted ideal sheaf is a generic vanishing sheaf.
引用
收藏
页码:1017 / 1039
页数:22
相关论文
共 50 条