On the Sum of the Powers of Distance Signless Laplacian Eigenvalues of Graphs

被引:0
|
作者
S. Pirzada
Hilal A. Ganie
A. Alhevaz
M. Baghipur
机构
[1] University of Kashmir,Department of Mathematics
[2] Shahrood University of Technology,Faculty of Mathematical Sciences
[3] University of Hormozgon,Department of Mathematics
关键词
Graph; distance signless Laplacian matrix; distance signless Laplacian eigenvalues; transmission regular; 05C12; 05C50;
D O I
暂无
中图分类号
学科分类号
摘要
Let G be a connected graph with n vertices, m edges and having distance signless Laplacian eigenvalues ρ1≥ ρ2 ≥ … ≥ ρn≥ 0. For any real number α ≠ 0, let mα(G)=∑i=1nρiα\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${m_\alpha }\left( G \right) = \sum\nolimits_{i = 1}^n {\rho _i^\alpha } $$\end{document} be the sum of αth powers of the distance signless Laplacian eigenvalues of the graph G. In this paper, we obtain various bounds for the graph invariant mα(G), which connects it with different parameters associated to the structure of the graph G. We also obtain various bounds for the quantity DEL(G), the distance signless Laplacian-energy-like invariant of the graph G. These bounds improve some previously known bounds. We also pose some extremal problems about DEL(G).
引用
收藏
页码:1143 / 1163
页数:20
相关论文
共 50 条
  • [41] On Sum of Powers of Normalized Laplacian Eigenvalues and Resistance Distances of Graphs
    Sun, Wenwen
    Chen, Haiyan
    Hu, Mingying
    SSRN, 2022,
  • [42] On sum of powers of normalized Laplacian eigenvalues and resistance distances of graphs
    Sun, Wenwen
    Chen, Haiyan
    Hu, Mingying
    DISCRETE APPLIED MATHEMATICS, 2023, 338 : 179 - 186
  • [43] Note on a conjecture for the sum of signless Laplacian eigenvalues
    Xiaodan Chen
    Guoliang Hao
    Dequan Jin
    Jingjian Li
    Czechoslovak Mathematical Journal, 2018, 68 : 601 - 610
  • [44] Note on a conjecture for the sum of signless Laplacian eigenvalues
    Chen, Xiaodan
    Hao, Guoliang
    Jin, Dequan
    Li, Jingjian
    CZECHOSLOVAK MATHEMATICAL JOURNAL, 2018, 68 (03) : 601 - 610
  • [45] On the sum of the distance signless Laplacian eigenvalues of a graph and some inequalities involving them
    Alhevaz, A.
    Baghipur, M.
    Hashemi, E.
    Paul, S.
    DISCRETE MATHEMATICS ALGORITHMS AND APPLICATIONS, 2020, 12 (01)
  • [46] On the distance signless Laplacian spectral radius and the distance signless Laplacian energy of graphs
    Alhevaz, Abdollah
    Baghipur, Maryam
    Paul, Somnath
    DISCRETE MATHEMATICS ALGORITHMS AND APPLICATIONS, 2018, 10 (03)
  • [47] ON THE SUM OF SIGNLESS LAPLACIAN SPECTRA OF GRAPHS
    Pirzada, S.
    Ganie, H. A.
    Alghamdi, A. M.
    CARPATHIAN MATHEMATICAL PUBLICATIONS, 2019, 11 (02) : 407 - 417
  • [48] Remoteness and distance, distance (signless) Laplacian eigenvalues of a graph
    Jia, Huicai
    Song, Hongye
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2018,
  • [49] Bounds on Signless Laplacian Eigenvalues of Hamiltonian Graphs
    Milica Anđelić
    Tamara Koledin
    Zoran Stanić
    Bulletin of the Brazilian Mathematical Society, New Series, 2021, 52 : 467 - 476
  • [50] Upper bounds on the (signless) Laplacian eigenvalues of graphs
    Das, Kinkar Ch.
    Liu, Muhuo
    Shan, Haiying
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2014, 459 : 334 - 341