On the Sum of the Powers of Distance Signless Laplacian Eigenvalues of Graphs

被引:0
|
作者
S. Pirzada
Hilal A. Ganie
A. Alhevaz
M. Baghipur
机构
[1] University of Kashmir,Department of Mathematics
[2] Shahrood University of Technology,Faculty of Mathematical Sciences
[3] University of Hormozgon,Department of Mathematics
关键词
Graph; distance signless Laplacian matrix; distance signless Laplacian eigenvalues; transmission regular; 05C12; 05C50;
D O I
暂无
中图分类号
学科分类号
摘要
Let G be a connected graph with n vertices, m edges and having distance signless Laplacian eigenvalues ρ1≥ ρ2 ≥ … ≥ ρn≥ 0. For any real number α ≠ 0, let mα(G)=∑i=1nρiα\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${m_\alpha }\left( G \right) = \sum\nolimits_{i = 1}^n {\rho _i^\alpha } $$\end{document} be the sum of αth powers of the distance signless Laplacian eigenvalues of the graph G. In this paper, we obtain various bounds for the graph invariant mα(G), which connects it with different parameters associated to the structure of the graph G. We also obtain various bounds for the quantity DEL(G), the distance signless Laplacian-energy-like invariant of the graph G. These bounds improve some previously known bounds. We also pose some extremal problems about DEL(G).
引用
收藏
页码:1143 / 1163
页数:20
相关论文
共 50 条
  • [21] On the sum of powers of Laplacian eigenvalues of bipartite graphs
    Zhou, Bo
    Ilic, Aleksandar
    CZECHOSLOVAK MATHEMATICAL JOURNAL, 2010, 60 (04) : 1161 - 1169
  • [22] Bounding the sum of powers of the Laplacian eigenvalues of graphs
    Chen Xiao-dan
    Qian Jian-guo
    APPLIED MATHEMATICS-A JOURNAL OF CHINESE UNIVERSITIES SERIES B, 2011, 26 (02) : 142 - 150
  • [23] On the Sum of Powers of Normalized Laplacian Eigenvalues of Graphs
    Bozkurt, S. Burcu
    Bozkurt, Durmus
    MATCH-COMMUNICATIONS IN MATHEMATICAL AND IN COMPUTER CHEMISTRY, 2012, 68 (03) : 917 - 930
  • [24] Bounding the sum of powers of the Laplacian eigenvalues of graphs
    Xiao-dan Chen
    Jian-guo Qian
    Applied Mathematics-A Journal of Chinese Universities, 2011, 26 : 142 - 150
  • [25] A note on sum of powers of the Laplacian eigenvalues of graphs
    Liu, Muhuo
    Liu, Bolian
    APPLIED MATHEMATICS LETTERS, 2011, 24 (03) : 249 - 252
  • [26] Characterization of extremal graphs from Laplacian eigenvalues and the sum of powers of the Laplacian eigenvalues of graphs
    Chen, Xiaodan
    Das, Kinkar Ch.
    DISCRETE MATHEMATICS, 2015, 338 (07) : 1252 - 1263
  • [27] EXTREMAL GRAPHS FOR THE SUM OF THE TWO LARGEST SIGNLESS LAPLACIAN EIGENVALUES
    Oliveira, Carla Silva
    de Lima, Leonardo
    Rama, Paula
    Carvalho, Paula
    ELECTRONIC JOURNAL OF LINEAR ALGEBRA, 2015, 30 : 605 - 612
  • [28] ON SUM OF POWERS OF LAPLACIAN EIGENVALUES AND LAPLACIAN ESTRADA INDEX OF GRAPHS
    Zhou, Bo
    MATCH-COMMUNICATIONS IN MATHEMATICAL AND IN COMPUTER CHEMISTRY, 2009, 62 (03) : 611 - 619
  • [29] ON THE DISTANCE AND DISTANCE SIGNLESS LAPLACIAN EIGENVALUES OF GRAPHS AND THE SMALLEST GERSGORIN DISC
    Atik, Fouzul
    Panigrahi, Pratima
    ELECTRONIC JOURNAL OF LINEAR ALGEBRA, 2018, 34 : 191 - 204
  • [30] SOME INEQUALITIES INVOLVING THE DISTANCE SIGNLESS LAPLACIAN EIGENVALUES OF GRAPHS
    Alhevaz, Abdollah
    Baghipur, Maryam
    Pirzada, Shariefuddin
    Shang, Yilun
    TRANSACTIONS ON COMBINATORICS, 2021, 10 (01) : 9 - 29