Let \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}${\cal T}_X$\end{document} be the full transformation semigroup on a set X. For a non-trivial equivalence E on X, let \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$T_E (X) =\{ f\in {\cal T}_X \colon \ \forall \, (x,y)\in E,\, (f(x),f(y))\in E \}.$\end{document} Then TE(X) is a subsemigroup of \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}${\cal T}_ X $\end{document}. For a finite totally ordered set X and a convex equivalence E on X, the set of all orientation-preserving transformations in TE(X) forms a subsemigroup of TE(X) which is denoted by OPE(X). In this paper, under the hypothesis that the set X is a totally ordered set with mn (m ≥ 2,n ≥ 2) points and the equivalence E has m classes each of which contains n consecutive points, we discuss the regularity of elements and the Green's relations for OPE(X).