Let \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}${\cal T}_X$\end{document} be the full transformation semigroup on a set X. For a non-trivial equivalence E on X, let \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$T_E (X) =\{ f\in {\cal T}_X \colon \ \forall \, (x,y)\in E,\, (f(x),f(y))\in E \}.$\end{document} Then TE(X) is a subsemigroup of \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}${\cal T}_ X $\end{document}. For a finite totally ordered set X and a convex equivalence E on X, the set of all orientation-preserving transformations in TE(X) forms a subsemigroup of TE(X) which is denoted by OPE(X). In this paper, under the hypothesis that the set X is a totally ordered set with mn (m ≥ 2,n ≥ 2) points and the equivalence E has m classes each of which contains n consecutive points, we discuss the regularity of elements and the Green's relations for OPE(X).
机构:
Guiyang Med Coll, Math Teaching & Res Sect, Guiyang, GuiZhou, Peoples R ChinaGuiyang Med Coll, Math Teaching & Res Sect, Guiyang, GuiZhou, Peoples R China
机构:
Univ Nova Lisboa, Fac Ciencias & Tecnol, Dept Matemat, P-2829516 Caparica, Portugal
Univ Lisbon, Ctr Algebra, P-1699 Lisbon, PortugalUniv Nova Lisboa, Fac Ciencias & Tecnol, Dept Matemat, P-2829516 Caparica, Portugal
Fernandes, Vitor H.
Honyam, Preeyanuch
论文数: 0引用数: 0
h-index: 0
机构:
Chiang Mai Univ, Fac Sci, Dept Math, Chiang Mai 50000, ThailandUniv Nova Lisboa, Fac Ciencias & Tecnol, Dept Matemat, P-2829516 Caparica, Portugal
Honyam, Preeyanuch
Quinteiro, Teresa M.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Lisbon, Ctr Algebra, P-1699 Lisbon, Portugal
Inst Super Engn Lisboa, Lisbon, PortugalUniv Nova Lisboa, Fac Ciencias & Tecnol, Dept Matemat, P-2829516 Caparica, Portugal
Quinteiro, Teresa M.
Singha, Boorapa
论文数: 0引用数: 0
h-index: 0
机构:
Chiang Mai Rajabhat Univ, Fac Sci & Technol, Dept Math & Stat, Chiang Mai, ThailandUniv Nova Lisboa, Fac Ciencias & Tecnol, Dept Matemat, P-2829516 Caparica, Portugal
机构:
Guizhou Med Univ, Sch Biol & Engn, Guiyang 50004, Guizhou, Peoples R China
Guizhou Normal Univ, Sch Math Sci, Guiyang 550001, Guizhou, Peoples R ChinaGuizhou Med Univ, Sch Biol & Engn, Guiyang 50004, Guizhou, Peoples R China
Zhao, Ping
Hu, Huabi
论文数: 0引用数: 0
h-index: 0
机构:
Guizhou Med Univ, Sch Biol & Engn, Guiyang 50004, Guizhou, Peoples R ChinaGuizhou Med Univ, Sch Biol & Engn, Guiyang 50004, Guizhou, Peoples R China
机构:
Yancheng Inst Technol, Sch Math & Phys, Yancheng 224051, Peoples R China
Henan Polytech Univ, Sch Math & Informat Sci, Jiaozuo 454003, Henan, Peoples R ChinaYancheng Inst Technol, Sch Math & Phys, Yancheng 224051, Peoples R China