Multi-modal RGB–Depth–Thermal Human Body Segmentation

被引:0
|
作者
Cristina Palmero
Albert Clapés
Chris Bahnsen
Andreas Møgelmose
Thomas B. Moeslund
Sergio Escalera
机构
[1] UB,Dept. Matemàtica Aplicada i Anàlisi
[2] Computer Vision Center,undefined
[3] Aalborg University,undefined
来源
关键词
Human body segmentation; RGB; Depth; Thermal;
D O I
暂无
中图分类号
学科分类号
摘要
This work addresses the problem of human body segmentation from multi-modal visual cues as a first stage of automatic human behavior analysis. We propose a novel RGB–depth–thermal dataset along with a multi-modal segmentation baseline. The several modalities are registered using a calibration device and a registration algorithm. Our baseline extracts regions of interest using background subtraction, defines a partitioning of the foreground regions into cells, computes a set of image features on those cells using different state-of-the-art feature extractions, and models the distribution of the descriptors per cell using probabilistic models. A supervised learning algorithm then fuses the output likelihoods over cells in a stacked feature vector representation. The baseline, using Gaussian mixture models for the probabilistic modeling and Random Forest for the stacked learning, is superior to other state-of-the-art methods, obtaining an overlap above 75 % on the novel dataset when compared to the manually annotated ground-truth of human segmentations.
引用
收藏
页码:217 / 239
页数:22
相关论文
共 50 条
  • [1] Multi-modal RGB-Depth-Thermal Human Body Segmentation
    Palmero, Cristina
    Clapes, Albert
    Bahnsen, Chris
    Mogelmose, Andreas
    Moeslund, Thomas B.
    Escalera, Sergio
    INTERNATIONAL JOURNAL OF COMPUTER VISION, 2016, 118 (02) : 217 - 239
  • [2] Multi-modal deep network for RGB-D segmentation of clothes
    Joukovsky, B.
    Hu, P.
    Munteanu, A.
    ELECTRONICS LETTERS, 2020, 56 (09) : 432 - 434
  • [3] MMNet: Multi-modal multi-stage network for RGB-T image semantic segmentation
    Xin Lan
    Xiaojing Gu
    Xingsheng Gu
    Applied Intelligence, 2022, 52 : 5817 - 5829
  • [4] MMNet: Multi-modal multi-stage network for RGB-T image semantic segmentation
    Lan, Xin
    Gu, Xiaojing
    Gu, Xingsheng
    APPLIED INTELLIGENCE, 2022, 52 (05) : 5817 - 5829
  • [5] Multi-modal neural networks with multi-scale RGB-T fusion for semantic segmentation
    Lyu, Y.
    Schiopu, I.
    Munteanu, A.
    ELECTRONICS LETTERS, 2020, 56 (18) : 920 - 922
  • [6] Multi-modal body part segmentation of infants using deep learning
    Voss, Florian
    Brechmann, Noah
    Lyra, Simon
    Rixen, Joeran
    Leonhardt, Steffen
    Antink, Christoph Hoog
    BIOMEDICAL ENGINEERING ONLINE, 2023, 22 (01)
  • [7] Multi-modal body part segmentation of infants using deep learning
    Florian Voss
    Noah Brechmann
    Simon Lyra
    Jöran Rixen
    Steffen Leonhardt
    Christoph Hoog Antink
    BioMedical Engineering OnLine, 22
  • [8] M3R-CNN: on effective multi-modal fusion of RGB and depth cues for instance segmentation in bin-picking
    Nishi T.
    Kawasaki S.
    Iewaki K.
    Okura F.
    Petit D.
    Takano Y.
    Harada K.
    Advanced Robotics, 2023, 37 (18) : 1143 - 1157
  • [9] Depth for Multi-Modal Contour Ensembles
    Chaves-de-Plaza, N. F.
    Molenaar, M.
    Mody, P.
    Staring, M.
    van Egmond, R.
    Eisemann, E.
    Vilanova, A.
    Hildebrandt, K.
    COMPUTER GRAPHICS FORUM, 2024, 43 (03)
  • [10] Multi-modal Complete Breast Segmentation
    Zolfagharnasab, Hooshiar
    Monteiro, Joao P.
    Teixeira, Joao F.
    Borlinhas, Filipa
    Oliveira, Helder P.
    PATTERN RECOGNITION AND IMAGE ANALYSIS (IBPRIA 2017), 2017, 10255 : 519 - 527