On the Spectral Analysis of Direct Sums of Riemann-Liouville Operators in Sobolev Spaces of Vector Functions

被引:0
|
作者
I. Yu. Domanov
M. M. Malamud
机构
[1] Mathematical Institute,
[2] AS CR,undefined
[3] Institute of Applied Mathematics and Mechanics,undefined
来源
关键词
Riemann-Liouville operator; invariant subspace; hyperinvariant subspace; commutant; double commutant; Primary 47A15, 47A16, 47L80; Secondary 47L10;
D O I
暂无
中图分类号
学科分类号
摘要
Let Jαk be a real power of the integration operator Jk defined on the Sobolev space Wkp[0, 1]. We investigate the spectral properties of the operator \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$A_{k} = \bigoplus^{n}_{j=1} \lambda_{j}J^{\alpha}_{k}$$\end{document} defined on \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\bigoplus^{n}_{j=1}W^{k}_{p} [0, 1]$$\end{document}. Namely, we describe the commutant {Ak}′, the double commutant \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\{A_k\}\prime\prime$$\end{document} and the algebra Alg Ak. Moreover, we describe the lattices Lat Ak and HypLat Ak of invariant and hyperinvariant subspaces of Ak, respectively. We also calculate the spectral multiplicity \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mu_{A_k}$$\end{document} of Ak and describe the set Cyc Ak of its cyclic subspaces. In passing, we present a simple counterexample for the implication \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\tt HypLat}(A \oplus B) = {\tt HypLat}\, A \oplus {\tt HypLat}\, B \Rightarrow {\tt Lat}(A \oplus B) = {\tt Lat}\,A \oplus {\tt Lat}\,B$$\end{document} to be valid.
引用
收藏
页码:181 / 215
页数:34
相关论文
共 50 条
  • [31] Weighted estimates for the Riemann-Liouville operators with variable limits
    Prokhorov, DV
    SIBERIAN MATHEMATICAL JOURNAL, 2003, 44 (06) : 1049 - 1060
  • [32] Approximation with continuous functions preserving fractal dimensions of the Riemann-Liouville operators of fractional calculus
    Binyan Yu
    Yongshun Liang
    Fractional Calculus and Applied Analysis, 2023, 26 : 2805 - 2836
  • [33] Approximation with continuous functions preserving fractal dimensions of the Riemann-Liouville operators of fractional calculus
    Yu, Binyan
    Liang, Yongshun
    FRACTIONAL CALCULUS AND APPLIED ANALYSIS, 2023, 26 (06) : 2805 - 2836
  • [34] Fractional Elementary Bicomplex Functions in the Riemann-Liouville Sense
    Coloma, Nicolas
    Di Teodoro, Antonio
    Ochoa-Tocachi, Diego
    Ponce, Francisco
    ADVANCES IN APPLIED CLIFFORD ALGEBRAS, 2021, 31 (04)
  • [35] SEVERAL INTEGRAL INEQUALITIES FOR GENERALIZED RIEMANN-LIOUVILLE FRACTIONAL OPERATORS
    Galeano Delgado, Juan Gabriel
    Napoles Valdes, Juan E.
    Perez Reyes, Edgardo
    COMMUNICATIONS FACULTY OF SCIENCES UNIVERSITY OF ANKARA-SERIES A1 MATHEMATICS AND STATISTICS, 2021, 70 (01): : 269 - 278
  • [36] BOUNDEDNESS WEIGHTED CRITERIA FOR MULTILINEAR RIEMANN-LIOUVILLE INTEGRAL OPERATORS
    Meskhi, Alexander
    TRANSACTIONS OF A RAZMADZE MATHEMATICAL INSTITUTE, 2023, 177 (01) : 147 - 148
  • [37] Generalized inequalities involving fractional operators of the Riemann-Liouville type
    Bosch, Paul
    Carmenate, Hector J.
    Rodriguez, Jose M.
    Sigarreta, Jose M.
    AIMS MATHEMATICS, 2022, 7 (01): : 1470 - 1485
  • [39] A Class of Quasilinear Equations with Riemann-Liouville Derivatives and Bounded Operators
    Fedorov, Vladimir E.
    Turov, Mikhail M.
    Bui Trong Kien
    AXIOMS, 2022, 11 (03)
  • [40] Localization operators of the wavelet transform associated to the Riemann-Liouville operator
    Baccar, C.
    Hamadi, N. B.
    INTERNATIONAL JOURNAL OF MATHEMATICS, 2016, 27 (04)