On the Spectral Analysis of Direct Sums of Riemann-Liouville Operators in Sobolev Spaces of Vector Functions

被引:0
|
作者
I. Yu. Domanov
M. M. Malamud
机构
[1] Mathematical Institute,
[2] AS CR,undefined
[3] Institute of Applied Mathematics and Mechanics,undefined
来源
关键词
Riemann-Liouville operator; invariant subspace; hyperinvariant subspace; commutant; double commutant; Primary 47A15, 47A16, 47L80; Secondary 47L10;
D O I
暂无
中图分类号
学科分类号
摘要
Let Jαk be a real power of the integration operator Jk defined on the Sobolev space Wkp[0, 1]. We investigate the spectral properties of the operator \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$A_{k} = \bigoplus^{n}_{j=1} \lambda_{j}J^{\alpha}_{k}$$\end{document} defined on \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\bigoplus^{n}_{j=1}W^{k}_{p} [0, 1]$$\end{document}. Namely, we describe the commutant {Ak}′, the double commutant \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\{A_k\}\prime\prime$$\end{document} and the algebra Alg Ak. Moreover, we describe the lattices Lat Ak and HypLat Ak of invariant and hyperinvariant subspaces of Ak, respectively. We also calculate the spectral multiplicity \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mu_{A_k}$$\end{document} of Ak and describe the set Cyc Ak of its cyclic subspaces. In passing, we present a simple counterexample for the implication \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\tt HypLat}(A \oplus B) = {\tt HypLat}\, A \oplus {\tt HypLat}\, B \Rightarrow {\tt Lat}(A \oplus B) = {\tt Lat}\,A \oplus {\tt Lat}\,B$$\end{document} to be valid.
引用
收藏
页码:181 / 215
页数:34
相关论文
共 50 条
  • [21] Boundedness Criteria for the Multilinear Riemann-Liouville Operators
    Edmunds, David E.
    Meskhi, Alexander
    Natelashvili, Lazare
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2025,
  • [22] Spectral Theorems Associated with the Riemann-Liouville Two-Wavelet Localization Operators
    Mejjaoli, H.
    ANALYSIS MATHEMATICA, 2019, 45 (02) : 347 - 374
  • [23] Some Incomplete Hypergeometric Functions and Incomplete Riemann-Liouville Fractional Integral Operators
    Ozarslan, Mehmet Ali
    Ustaoglu, Ceren
    MATHEMATICS, 2019, 7 (05)
  • [24] Extended incomplete Riemann-Liouville fractional integral operators and related special functions
    Ozarslan, Mehmet Ali
    Ustaoglu, Ceren
    ELECTRONIC RESEARCH ARCHIVE, 2022, 30 (05): : 1723 - 1747
  • [25] Riemann-Liouville and Higher Dimensional Hardy Operators for NonNegative Decreasing Function in Lp(.) Spaces
    Sarwar, Muhammad
    Murtaza, Ghulam
    Ahmed, Irshaad
    ABSTRACT AND APPLIED ANALYSIS, 2014,
  • [26] Riemann-Liouville Fractional integral operators with respect to increasing functions and strongly (α, m)-convex functions
    Farid, Ghulam
    Yasmeen, Hafsa
    Ahmad, Hijaz
    Jung, Chahn Yong
    AIMS MATHEMATICS, 2021, 6 (10): : 11403 - 11424
  • [27] On Bellman-Golubov theorems for the Riemann-Liouville operators
    Zung, Pham Tien
    JOURNAL OF FUNCTION SPACES AND APPLICATIONS, 2009, 7 (03): : 289 - 300
  • [28] SOME INCOMPLETE RIEMANN-LIOUVILLE FRACTIONAL DERIVATIVE OPERATORS
    Menon, Mudita
    Mittal, Ekta
    Gupta, Rajni
    TWMS JOURNAL OF APPLIED AND ENGINEERING MATHEMATICS, 2022, 12 (01): : 210 - 223
  • [29] MODIFIED RIEMANN-LIOUVILLE INTEGRO-DIFFERENTIAL OPERATORS IN THE CLASS OF HARMONIC FUNCTIONS AND THEIR APPLICATIONS
    Torebek, Berikbol Tillabaiuly
    UFA MATHEMATICAL JOURNAL, 2015, 7 (03): : 73 - 83
  • [30] Weighted Estimates for the Riemann-Liouville Operators with Variable Limits
    D. V. Prokhorov
    Siberian Mathematical Journal, 2003, 44 : 1049 - 1060