On the Spectral Analysis of Direct Sums of Riemann-Liouville Operators in Sobolev Spaces of Vector Functions

被引:0
|
作者
I. Yu. Domanov
M. M. Malamud
机构
[1] Mathematical Institute,
[2] AS CR,undefined
[3] Institute of Applied Mathematics and Mechanics,undefined
来源
关键词
Riemann-Liouville operator; invariant subspace; hyperinvariant subspace; commutant; double commutant; Primary 47A15, 47A16, 47L80; Secondary 47L10;
D O I
暂无
中图分类号
学科分类号
摘要
Let Jαk be a real power of the integration operator Jk defined on the Sobolev space Wkp[0, 1]. We investigate the spectral properties of the operator \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$A_{k} = \bigoplus^{n}_{j=1} \lambda_{j}J^{\alpha}_{k}$$\end{document} defined on \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\bigoplus^{n}_{j=1}W^{k}_{p} [0, 1]$$\end{document}. Namely, we describe the commutant {Ak}′, the double commutant \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\{A_k\}\prime\prime$$\end{document} and the algebra Alg Ak. Moreover, we describe the lattices Lat Ak and HypLat Ak of invariant and hyperinvariant subspaces of Ak, respectively. We also calculate the spectral multiplicity \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mu_{A_k}$$\end{document} of Ak and describe the set Cyc Ak of its cyclic subspaces. In passing, we present a simple counterexample for the implication \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\tt HypLat}(A \oplus B) = {\tt HypLat}\, A \oplus {\tt HypLat}\, B \Rightarrow {\tt Lat}(A \oplus B) = {\tt Lat}\,A \oplus {\tt Lat}\,B$$\end{document} to be valid.
引用
收藏
页码:181 / 215
页数:34
相关论文
共 50 条
  • [1] On the Spectral Analysis of Direct Sums of Riemann-Liouville Operators in Sobolev Spaces of Vector Functions
    Domanov, I. Yu.
    Malamud, M. M.
    INTEGRAL EQUATIONS AND OPERATOR THEORY, 2009, 63 (02) : 181 - 215
  • [2] Riemann-Liouville derivatives of abstract functions and Sobolev spaces
    Dariusz Idczak
    Fractional Calculus and Applied Analysis, 2022, 25 : 1260 - 1293
  • [3] Riemann-Liouville derivatives of abstract functions and Sobolev spaces
    Idczak, Dariusz
    FRACTIONAL CALCULUS AND APPLIED ANALYSIS, 2022, 25 (03) : 1260 - 1293
  • [4] A NOTE ON RIEMANN-LIOUVILLE FRACTIONAL SOBOLEV SPACES
    Carbotti, Alessandro
    Comi, Giovanni E.
    COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2021, 20 (01) : 17 - 54
  • [5] Bilateral Riemann-Liouville Fractional Sobolev spaces
    Leaci, A.
    Tomarelli, F.
    NOTE DI MATEMATICA, 2021, 41 (02): : 61 - 83
  • [6] Characterization of image spaces of Riemann-Liouville fractional integral operators on Sobolev spaces Wm,p (ω)
    Zhao, Lijing
    Deng, Weihua
    Hesthaven, Jan S.
    SCIENCE CHINA-MATHEMATICS, 2021, 64 (12) : 2611 - 2636
  • [7] Characterization of image spaces of Riemann-Liouville fractional integral operators on Sobolev spaces Wm,p(Ω)
    Lijing Zhao
    Weihua Deng
    Jan S.Hesthaven
    Science China(Mathematics), 2021, 64 (12) : 2611 - 2636
  • [8] Characterization of image spaces of Riemann-Liouville fractional integral operators on Sobolev spaces Wm,p (Ω)
    Lijing Zhao
    Weihua Deng
    Jan S. Hesthaven
    Science China Mathematics, 2021, 64 : 2611 - 2636
  • [9] Riemann-Liouville Fractional Sobolev and Bounded Variation Spaces
    Leaci, Antonio
    Tomarelli, Franco
    AXIOMS, 2022, 11 (01)
  • [10] Fractional Sobolev Spaces via Riemann-Liouville Derivatives
    Idczak, Dariusz
    Walczak, StanisBaw
    JOURNAL OF FUNCTION SPACES AND APPLICATIONS, 2013,